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Preface

This thesis is written in order to full fill the requirements of the masters degree. The
topic is the retrospective population genetic analysis of structured populations. It is
a purely theoretical work, and in that respect it differs somewhat from the tradition,
of biological master thesises. I have chosen this form out offascination of the
strength of the retrospective analysis, that is, the Coalescent.

In chapter one a review of the Coalescent is given. This is a probabilistic
description the ancestral relationship of sampled sequences. It is in this framework,
that the results presented in the thesis, are based. It is assumed throughout that the
sequences have not been subject to selection, that recombination of sequences does
not occur, and that population size is constant through time.

Chapter two contains a description of the coalescent in a structured population.
This is the topic of this thesis, and the chapter serves to introduce a general un-
derstanding of the effects of structuring on the ancestral relationship of sampled
sequences.

Chapter three covers my own work. Here a structured Moran model is pre-
sented to describe a source-sink functionality in a coalescent framework. The
model is developed for an island model, and serves to investigate the effects of
varying demographic parameters in a structured populationof constant size. The
Moran model is chosen since this includes the birth and deathrates responsible for
demographic differences between subpopulations. The approach taken is to resolve
all transition probabilities in the structured coalescentinto the birth and death rates
that produce them. By investigating the coalescence time oftwo sequences in a
source-sink system of two subpopulations, it is shown that the effect of a source-
sink dynamic is an effect on effective population size only,if the subpopulation
sizes are just moderately large. A result for the source-sink effective population
size is presented for the case of strong migration, and the effect on genealogy
structure, for small subpopulations, is described.

Chapter four is a discussion of my own work, and of the problems of ambiguity
encountered in retrospective genetic analysis.

I would like to thank my supervisor for advice and fruitful discussions during
the preparation of this thesis. Further Jakob Skou Pedersenand Roald Forsberg
must be thanked for constituting a pleasant working environment.
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Chapter 1

The Coalescent

This chapter is concerned with the probabilistic description of the genealogical
relationship of sequences sampled from a panmictic population. It is assumed that
the sequences an their ancestors have not been subject to selection.

Consider a panmictic population under the Wright-Fisher model. Random
sampling governs the representation of lineages through time, and hence, the ances-
tral relationship of sequences sampled from such a population. An example of how
genetic drift affects the representation of lineages in time is shown in figure 1.1. A
straight forward consequence of genetic drift is, that the ancestral relationship of
the sequences in the present generation can be represented by a tree structure. In
figure 1.2 the ancestral relationship of five lineages from figure 1.1 is shown.

Such trees have branch levels, that are characterised by thenumber of lineages
left from the sample, and are separated by events where two lineages find a com-
mon ancestor. A probabilistic model, called The Coalescent, that describes this
process of ancestral relationship between lineages in a sample was presented by
Kingman in his two key papers (Kingman 1982b), (Kingman 1982a). Coalescent
theory has become one of the foremost tools for population geneticists, when mak-
ing inferences on the trees representing the ancestral relationship of a sample of
DNA sequences. It is within this framework, that the models in the remaining part
of this thesis are treated. Below the main features of The Coalescent are presented.

1.1 The Coalescence Process

The Coalescent is retrospective, in the sense that is works its way backwards in
time describing the ancestral process. When referring to time in the Coalescent it
we thus refer to the length of time from the present and backwards in time.

The Kingman Coalescent process,At, is a Markov process in continuous time
in which the branch levels are states, and the events where two lineages find a com-
mon ancestor, the coalescence events, are transitions between states. A Markov
process is a process that has no memory, in the sense that the transition proba-
bilities are only dependent on the state, that the chain is presently in. Hence, the
chain of states proceeds from the state where the all the lineages are separate, to
the absorbing end state, where all the lineages have coalesced, so that only one
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Present

Time

Figure 1.1: As time progresses form the past, the random sampling of gametes to the new
generations will give some lineages more descendants at theexpense of others. This effect
in denoted genetic drift.

Present

Time

Figure 1.2: This figure is essentially the same is figure 1.1, except that only the only the
ancestral relationship of a sample of five sequences from thepresent population is drawn.
As can be seen, owing to genetic drift, the ancestral relationship of a sample takes the form
of a tree.
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1 2 3 4 5 6 7

t

Figure 1.3: The genealogy of a sample of seven sequences. Thedashed line indicates
time t back in time, and the sampled lineages are by this time represented by only three
ancestors or equivalence classes.

lineage is left. This last lineages is denoted the most recent common ancestor. The
sequence of states between the initial and the end state, depends on which lineages
coalesce. In other words, how the topology of the tree develops backwards in time,
is dependent on the way that common ancestors are found amongthe lineages.

Kingman described this in terms of equivalence relations. An equivalence rela-
tion describes how many lineages that are left from the sample at some time in the
past, and how many lineages in the original sample that each ancestor is ancestor
to. If there arek lineages left at timet, the equivalence relation is a set ofk equiva-
lence classes, each representing a lineage at timet. Labeling the originally sampled
sequences{1 . . . n} one equivalence class contains the labels of the lineages that
one ancestor is ancestor to. In other words, an equivalence class corresponds to an
ancestor. Forn = 7, as in figure 1.3, the equivalence relation at timet could be:

(1, 2), (3, 4, 5), (6, 7)

In this case there are tree lineages left. These are ancestors to sequences 1 and 2,
to sequences 3, 4 and 5, and to sequences 6 and 7 respectively.Thus the process
moves through a series of equivalence relations with decreasing number of equiv-
alence classes, corresponding to the decreasing number of ancestors. We denote
the initial state withn equivalence classes,∆, and the absorbing end state with
one equivalence class ,Υ. The number of equivalence classes at timet is denoted
At = |At|.

The set of equivalence relations withk equivalence classes is denotedΦk. It
is obviously only possible to get to a stateη ∈ Φk from a stateξ ∈ Φk+1, and
only a subset ofΦk+1 will by a coalescence of two equivalence classes produce a
particular member ofΦk. A stateξ that in one step can reach stateη is denoted
ξ ≺ η (formally: ξ ≺ η = ξ ⊂ Φ|ξ|, |ξ| = |η| + 1).

If the number of genes in the population isN , then the probability that two
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particular lineages find a common ancestor in the previous generation is1/N . For
large values ofN it can be assumed that the probability that more than two lineages
find a common ancestor is negligible. Thus the probability oftransitions between
equivalence relations is:

pξη = δξη + rξηN
−1 + O(N−2), (1.1)

whereδξη is the Kronecker delta, (which is one ifξ = η and zero otherwise), and

rξη =






−k(k − 1)/2 if ξ = η andk = |ξ|
1 if ξ ≺ η
0 otherwise.

(1.2)

k(k − 1)/2 =
(

k
2

)
equals the number of possible coalescences betweenk equiv-

alence classes. IfP = {pξη} is the matrix of these transition probabilities, then
scaling time in units ofN and passingN to infinity, so that each time step becomes
infinitely small, produces the Coalescent:

lim
N→∞

P [Nt] = eRt, (1.3)

where the superscript[Nt] indicates that time is scaled withN , and whereR =
{rξη} is the infinitesimal generator of the continuous Markov processA.

If we for now only consider the process of decreasing the number of ancestors,
At, it does not matter which equivalence class we have after thetransition, but only
that we have a transition, so thatAt decreases by one. Since each equivalence rela-
tion can produce a new equivalence class by coalescingk(k − 1)/2 different pairs
of equivalence classes, the infinitesimal generatorQ = {qij}, or the exponential
intensities of the continuous Markov process,At is:

qij =






k(k − 1)/2 if j = i − 1
−k(k − 1)/2 if i = j

0 otherwise.
(1.4)

At only determines the number of equivalence classes (ancestors) at time t. Which
of the equivalence classes in a equivalence relation that amalgamate, and thus
which of the possible new equivalence relations we have after the transition is
determined by another process. This process, governing which of the states withk
equivalence classes the process is in, is denotedEk. Ek is also a Markov process
and its transition probabilities are given by:

P(Ek−1 = η | Ek = ξ) =

{ 2
k(k−1) if ξ ≺ η

0 otherwise.
(1.5)

Hence, which of the pairs that coalesce, and thus whichη ≻ ξ, that is reached from
ξ is uniformly distributed.

Since the lineages are indistinguishable, there is no information contained in
knowing which of the particular pairs that coalesce. The information is embedded
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in the distribution of the sizes of equivalence classes at a given time. Given that we
havek lineages remaining in the sample, the probability of reaching a particular
equivalence relation is given by:

P(Ek = ξ) =
(n − k)!k!(k − 1)!

n!(n − 1)!
ρ1 . . . ρk, (1.6)

whereρ1 . . . ρk are the sizes of the equivalence classes inξ (Kingman 1982a).
Ek andAt are independent, which is to say that the process that determines

the number of lineages remaining from the sample at timet, is independent of the
process that determines which lineages coalesce in each event. This means that the
Coalescent can be expressed in the form:

At = EAt . (1.7)

In words, the probability of having a particular equivalence relation at a particular
time, can be factorised into the probability that we at timet have a state withk
equivalence classes, times the probability that among all the possible equivalence
relations inΦk we have a particular one:

P(At = ξ) = P(At = j | A0 = n)P(Ek = ξ), (1.8)

whereP(Ek = ξ) is given by (1.6), and

P(At = j | A0 = n) =

n∑

k=j

τ0
k (t)

(2k − 1)(−1)k−jj(k−1)n[k]

j!(k − j)!i(k)
, 2 ≤ j ≤ n,

(1.9)
whereτ0

k (t) = exp[−k(k− 1)t/2] (Tavaré 1988). Forn = N = ∞ (1.9) gives the
number of distinct ancestors of the entire population at time t.

As long as the lineages are identical, the results above are of limited value.
However, when a Poisson process of mutation on branches of the tree is included,
they can be used to calculate the probability, that a mutation shared by some num-
ber of sequences in the sample, occured at a particular pointin time.

Below only the process of decreasing the number of lineages,At, will be con-
sidered. The time between two such events, the coalescence time is exponentially
distributed. Their mean and variance are:

E[T ] = λ−1 and V ar(T ) = λ−2. (1.10)

In deriving the Coalescent under the Wright-Fisher model, we have assumed
that multiple coalescence events and coalescence events ofthree lineages to one an-
cestor do not happen. This makes the Coalescent an approximation to the Wright-
Fisher model. However, with large N, it is a very good one.

Since the expected lengths of the branches are given by2/k(k − 1), the ex-
pected total length of the tree,Tn→1, for a sample ofn lineages, or the time to the
most recent common ancestor, of the entire sample is:
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Figure 1.4: The plot showsE(Tn→n−1) as a function ofn. The last three or four branches
constitute together almost the entire length of the tree.

E[Tn→1] = 2

(
1 −

1

n

)
, (1.11)

which is bounded, in that passingn to the limit n → ∞, (1.11) converges to two.
(1.11) implies that the time until the coalescence of the last two ancestors,T2→1,
constitutes at least half ofTn→1, and that the expectation ofTn→n−1 decreases
rapidly asn increases (see figure 1.4). For largen, the first part of the Coalescent
process is practically an implosion of lineages. As a resultT2→1 andT3→2 accounts
for most of the variability inTn→1, see figure 1.4, (Donnelly & Tavaré 1995). This
implies, that the time to the most recent common ancestor of arelatively small
sample, almost equals that of the entire population.

A nice way of picturing the process of decreasing number of ancestors, is by the
densities of having a particular number of ancestors remaining in from the sample.
This is depicted in figure 1.5 that in kindly made available byRoald Forsberg and
Jotun Hein from a paper of their’s to appear.

1.2 Robustness of the Coalescent

Kingman derived the Coalescent for the Wright-Fisher model. But the results are
equally valid for other models as well.

If we label all members of a generation,g, {1, . . . , N}, thenνi is the number
of offspring in generationg + 1 to the member with labeli in generationg. For
the Wright-Fisher model the vector describing the new generation, {ν1, . . . , νN}
is a symmetric multinomial. The joint distribution ofνi is said to be exchangeable
if it can be assumed, (I) that the members in a generation need not be labelled in
any particular way, and (II ) that we can assume that theνi, i ∈ {1, . . . , N} are
independent of theνi, i ∈ {1, . . . , N} in other generations.
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Figure 1.5: The densities of having a particular number of ancestors remaining from a
sample of seven sequences.

Kingman showed that the results for the Coalescent as derived for the Wright-
Fisher model, with appropriate scaling, are equally valid for any model if the as-
sumptions (I) and (II ) applies to the joint distribution ofνi, and if it can be shown
that the variance of the joint distribution ofνi, σ2, converges to a finite value as
N tends to infinity. (and that the moments ofν are bounded:E[νm

i ] ≤ M, m =
1, 2, . . . for some number M). If this is the case, the results for the Coalescent ap-
plies, but with a time scalingN/σ2. In the Wright-Fisher modelσ2 = 1. For the
Moran modelσ2 = 2/N so that the time scaling in this case becomesN2/2.

1.3 The Mutation Process

The mutation process works to differentiate the lineages from the time of their
common ancestor and forward to the time of sampling. If this differentiation affects
how many offspring each lineage in the population have, or whether or not the
lineage is likely to migrate to another population, the genealogy will be dependent
on the mutation process. If on the other hand we assume that the mutations are
neutral, the mutation process and the genealogical processare independent.

It will be assumed throughout, that the mutational process is a Poisson process
with mutation rateµ and mean number of mutationsµt. This implies, that the
expected number of mutations in a lineage on a time intervalt, is linear function of
t, and means that the distinction between branch length and number of mutations
is a simple matter of scaling.

The waiting time to the next mutation event in a lineage is exponentially dis-
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tributed

P(T > t) = exp

(
−

θ

2
t

)
, (1.12)

whereθ = 2Nµ is a composite parameter that is often used, sinceµ andN can not
be separately estimated on less one of them is known.

The number of mutations separating two sequences is governed by two com-
peting exponentials. Whether two lineages will coalesce first, or whether one of
the two will mutate first is governed by the relative size of the coalescence rate and
the mutation rate. Since the two processes are independent,the probability that
they coalesce first is

F =
1

1 + θ
, (1.13)

which is the familiar result for identity by descent. Hence,the expected number
of mutations occurring in both lineages before they coalesce, is geometrically dis-
tributed with parameter1/(1 + θ).

1.4 Measures of Divergence

The two most widely used measures of divergence between sequences are the num-
ber of segregating nucleotide sites, and the average numberof pairwise differences
in nucleotides. The average number of pairwise differencesis the average number
of differences between two sequences randomly chosen from the population. This
number can be estimated by.

E[Πij ] =
2

n(n − 1)

∑

i6=j

Πij = θ, i, j ∈ {1 . . . n} (1.14)

(Tajima 1983), whereΠij is the number of differences between sequencesi andj.
This follows from the fact that the mean branch length separating two sequences is
2N , and that the rate of mutation in any of the lineages is2µ.

The number of segregating sites is the number of sites in the compared locus, in
which the sampled sequences differ. BothS andΠ have to be scaled with the length
of the sequence to obtain a measure useful for comparison measures. However, in
the following, when referring to these measures,µ will be the mutation rate per
sequence of equal length, so that scaling is not needed. Under the infinite sites
model and with random mating, one mutation corresponds to one segregating site.
Under the same assumptions the mean number of segregating sites is:

E[S] = Nµ

n∑

k=2

kE(Tk→k−1) =
θ

2

n∑

k=2

k
2

k(k − 1)
= θ

n−1∑

k=1

1

k
= aθ, (1.15)
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wherea is the sum(1+1/2+ · · ·+1/n−1) (Watterson 1975). Here, the first term
of (1.15) is the total branch length, (the mean length of eachbranch level, times the
number of lineages in that branch level), times the mutationrate, scaled withN .
Note that the total branch length is given by

∑n−1
k=1 2/k. So for two sequences the

two measures have the same mean.
An advantage of the number of segregating sites over the number of pairwise

differences, is that it has a smaller variance, but a drawback is that the number
of segregating sites obviously depends on sample size (Li 1997). The number of
pairwise differences takes the frequencies into account, whereas the number of
segregating sites does.

A way of characterising the proportions of the tree is through the sizes of ex-
ternal and internal branches. A branch is said to be externalif it has one end at
t = 0. Otherwise it is internal. The mean number of segregating sites in external
branches is given by:

E[Se] = θ. (1.16)

The mean number of segregating sites in internal branches is:

E[Si] = (a − 1)θ. (1.17)

(Fu & Li 1993) The relation between these two measures can be used to test devia-
tions in tree structure, from the expected branch length proportions of the standard
Kingman Coalescent.
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Chapter 2

The Structured Coalescent

In this chapter, the structured Coalescent is described. The first part contains the
general probabilistic description of the genealogical process in structured popula-
tions. Only the process of decreasing number of ancestors, denotedAt i the previ-
ous section, will be considered. The second part summerisesthe general effects of
structuring on the Coalescent. The third part is a brief presentation of different mi-
gration regimes. In the last part the implications of structure is described in detail
in terms of an island model.

For the sake of exhaustiveness I will limit the scope of the following to island
models with abstract structure. That is, I will not considerexplicit geographical
structure such as stepping stone, lattice or torus models. Further I will not consider
results for varying deme sizes and hence neither results formeta-population struc-
ture. I choose this seemingly narrow scope, because this is intended as a review
on the very nature of structuring, and not of the many other effects that is often
considered in conjunction with structure. The motivation for doing this, is to re-
view the variety of ancestral relationships, that these relatively simple models can
produce.

2.1 The Coalescent with Migration

Here the structured Coalescent will be considered for a haploid species in the is-
land model. However, the results derived account for the diploid setting as well,
with population size equal toNT /2, if the following applies: (I) the species is
monoecious, (or dioecious if the migration pattern is sex independent). (II ) within-
population mating is random with selfing in each deme at a rateequal to the recip-
rocal of the deme size. (III ) migration is gamete migration (Nagylaki 1980).

Consider a population subdivided into a number of subpopulations or demes.
The set ofD demes is denotedS = {1, . . . ,D}. From the time of sampling and
back to the most resent common ancestor, a decreasing numberof lineages will at
random times change their location among theD demes. This results in a Markov
chain with state spaceI. Each stateα ∈ I is a d-vector that describe the location of
the sample among the D demes. So,αi is the number of lineages in demei. Such
a vector is denotedεi if αi = 1 andαj = 0 for j 6= i. |α| designates the number
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of lineages left in the sample.

2.1.1 Forward migration

When considering forward migration among demes, we must bare in mind, that
the object of study is the migration of individuals or gametes. Migration rates are
only a modelling tool, to describe this process. Keeping this in mind will ease
understanding of the structured Coalescent.

A migration rate is the probability that one particular genein a deme migrates
in one particular generation. It can be interpreted as the number of migrants from
demei to j divided by the size of demei. That is, the forward migration rate is
expressed in terms of the corresponding deme size that genesemigrate from.

The forward migration regime governing the location of the lineage in the pop-
ulation is described by a Markov chain. The transition probability of this Markov
chain is the per generation probability, that a lineage migrates from demej to deme
i: mji for j 6= i and1 −

∑
j 6=i mji = 1 + mjj for j = i where

mjj = −
∑

j 6=i

mji. (2.1)

The model can be deterministic in the sense that a fractionmji of demej mi-
grates to demei each generation, givingmjiNj migrants fromj to i, and it can
be stochastic, that is, each individual migrates independently giving a binomially
distributed number of migrants,mjiNj.

Nested within these two models, we also have to distinguish between gamete
migration and individual migration. With gamete migrationthe new generation in
each deme is sampled partly from the gamete pool of the deme, and partly from
the gamete pools of the other demes, or from a gamete pool of migrants from
all demes. Here the migration is an integrated part of the sampling process. In
such a model migration is more properly denoted dispersal for three good reasons:
(I) Migration is not dependent on any properties of the deme. There can be no
connection between potential over or under-production andmigration, if all gamete
pools can be assumed to be infinitely large. (II ) Gametes do not think, and they
certainly do not evaluate their possible success in a new deme. (III ) Gametes spread
by external forces independent of habitat quality.

With individual migration, the migration step happens before sampling of the
next generation. If the number of immigrants and the number of emigrants are
not the same, the deme size is obviously altered, until the sampling to the next
generation among the lineages in the deme, regulates the deme size to the original
size,Ni. This model allows for a possible evaluation the habitat quality. Hence,
individual migration may be caused by a source-sink relationship between demes,
and is thus more in line with the conventional notion of the term migration. In the
following, however, I will stick to convention anduse the migration term for both
gamete and individual migration.

12



2.1.2 The Genealogical Process

Let Pt(βi|αi) be the transition probability fromαi to βi. In the case of gamete
migration, the transition probability is straightforwardly given by

Pt(βi|αi) =






(
αi

2

)/
Ni + O((1/N)2) if βi = αi − 1

1 −

(
αi

2

)/
Ni + O((1/N)2) if βi = αi

O((1/N)2) otherwise

, (2.2)

since the migration step does not influence the deme sizes.
In the case of individual migration, migration happens before sampling to the

next generation, from the deme gamete pool. Because the migration step is separate
from the sampling step, the number of different lineages in the gamete pool, is
dependent on whether migration causes a net influx or efflux from the deme. With a
net influx the number of lineages in the deme before sampling,and thus the number
of lineages that constitute the gamete pool, is larger, and the other way around,
obviously, for a net efflux. If we letM∗i denote the number of lineages added to
the deme after migration (M∗i may be negative), then the transition probabilities
are

Pt(βi|αi) =






(
αi

2

)/
(Ni + M∗i) + O((1/Ni + M∗i)

2) if βi = αi − 1

1 −

(
αi

2

)/
(Ni + M∗i) + O((1/(Ni + M∗i))

2) if βi = αi

O((1/Ni + M∗i)
2) otherwise.

(2.3)
It is assumed, that the migration rate scales withNT asNT goes to infinity, so that
the number of migrants stays finite:

lim
Ni→∞

i∈S

ciNT mji = Mji (2.4)

whereci is the fraction of the total population size,NT , that demei constitutes.
Scaling time in units ofNT → ∞ so that each time step goes to zero, we get
the continuous Markov process for the genealogical process, At, with infinitesimal
generator for both gamete and individual migration

lim
Ni→∞

i∈S

NT {Pt(β|α) − δα,β} =






(
α

2

)
c−1
i if βi = α − εi

−

(
α

2

)
c−1
i if β = α

0 otherwise,

(2.5)
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The only difference between this result and (1.4)) is, that this is a result for one out
of several demes, that together form the population.

In cases where assumption (2.4) do not hold, where the numberof migrants
M∗i can not be assumed to be negligible compared to the deme sizes, the genealog-
ical process under individual migration can not safely be described by the simpli-
fication (2.5) unless it is assumed that the deme sizes are regulated toNi before
reproduction.

2.1.3 Backward Migration

The forward migration rates were expressed in terms of the size of the deme, that
the lineage was in before the migration event, that is, the deme that the lineage
emigrates from.

The backward migration rate is the per generation probability that one partic-
ular gene/lineage resident in demei is received from demej. In other words, the
backwards migration rates are expressed in terms of the demesize, that the lineage
ends up in after the forward migration event, rather than thedeme size, that the
forward migration came from. Since we assume that each migration event does not
change the deme sizes, the rates for the backward process is given by

rij =

{ Nj

Ni
mji if i 6= j

− 1
Ni

(∑
h 6=i Nhmhi

)
if i = j

, (2.6)

whererij designates the probability that an individual located in deme i was lo-
cated in demej in the previous generation. Hence, just as for the forward rates we
have that

∑
j rij = 0 and thatrii = −

∑
i6=j rij. The ’r’ refers to relocation. I will

use this word instead of migration, to emphasise that the process of the lineages
changing location backwards in time, is not to be thought of as a process of actual
migrations happening backwards in time, but only as a set of probabilities, describ-
ing migration in a retrospective fashion. The matrix, describing this process, will
nevertheless be referred to as the backwards migration matrix.

When modelling population genetics backwards in time, it iscrucial to consider
throughly which properties of the corresponding forward model, that may inferred
from the backwards model, and which features that can not be inferred. This will
be addressed in the discussion.

In the Markov chain describing the backwards migration process, time is scaled
with NT , so that it becomes continuous asNT is passed to infinity. It is assumed
that the relocation probability scales with theNT asNT → ∞. This implies that
the number of migrants do not go to infinity as the population size does. Formally
it is assumed that

lim
Ni→∞

i∈S

ciNT rij = Rij, (2.7)
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which is a consequence of (2.4). Under the assumption (2.7),we ignore terms
smaller thanO(1/N). This means that we ignore the probability of having more
than one relocation event affecting our sample each generation. The Q-matrix gov-
erning the continuous Markov process of relocation events,is then given by

lim
Ni→∞

i∈S

NT {Pt(β|α)−δα,β} =






αirijciNT if β = α − εi + εj for i 6= j

−
∑

i∈S

αi|rii|ciNT if β = α

0 otherwise,
(2.8)

since the individual lineages change location independently. Again the time is
scaled in units ofNT asNT is passed to infinity. The Markov process governed by
the infinitesimal generator (2.8), can also be thought of as asystem of|α| Markov
processes, each describing the location of one particular lineage.

2.1.4 The Combined Process

Combining the independent Markov processes of the migration and the genealogy,
we get the continuous Markov process for the structured Coalescent. The infinites-
imal generator of this Markov chain is the matrix:

Qα,β =






αirijNT if β = α − εi + εj for i 6= j(
αi

2

)
c−1
i if β = α − εi

−

{
∑

i∈S

(
αi

2

)
c−1
i +

∑

i∈S

αirijNT

}
if β = α

0 otherwise.
(2.9)

It is implicit that the infinitesimal generator of the combined process is only given
by Q if |α| ≥ 2 and is zero otherwise. That is, any stateα = {α ∈ I; |α| = 1} is
an absorbing state. The waiting time to the next event of any kind is thus exponen-
tially distributed, with the proper diagonal entry in the Q-matrix as parameter.

P(T < t) = 1 − exp

[

−

(
∑

i∈S

(
αi

2

)
c−1
i +

∑

i∈S

αiRij

)

t

]

, (2.10)

whereR = ciNT rij is the scaled relocation probability. Since the time to the next
event of each particular type is independent, the process can be resolved into2×D
competing exponentials (a migration or a coalescence eventfor each deme), each
with an expected waiting time equal to the reciprocal of its intensity. WithNT

going to infinity, the probability of more than one event of either coalescence or re-
location is negligible, since both coalescence rate and relocation rate isO(1/NT ).
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When an event of any type occurs, the probability that it is a particular type event,
e.g. a coalescence event in deme two, is a simple weighting ofthe exponential
intensities:

P(Next event = Coal. in deme two) =

(
α2

2

)
c−1
2

∑

i∈S

(
αi

2

)
c−1
i +

∑

i∈S

αiRij

. (2.11)

Results such as the probability that some number of lineagescoalesce in one
deme before any of them are relocated to another deme is of cause straightfor-
wardly obtained from this property of exponential distributions. Slatkin’s (1989)
result for non-immigrant ancestry, the probability that all the αi lineages sampled
in a deme coalesce before any of them relocates to another deme exemplifies the
applications. Here, even deme sizes are assumed for simplicity.

P(n) =

αi∏

k=2

(
k
2

)
(
k
2

)
+ kri∗ciNT

=

αi∏

k=2

k(k − 1)

k(k − 1) + k2Ri∗
=

(k − 1)!

B(αi)
, (2.12)

where the subscripti∗ means demei to some other deme, andB(αi) = (2Ri∗ +
1) · · · (2Ri∗ + αi − 1). Slightly modified from (Slatkin 1989).

2.1.5 The Structured Coalescent andFST

Identity by descent results and Coalescent results are equivalent since they are just
alternative ways to describe the same ancestral processes.This implies that existing
identity by descent results relatively easily can be converted to coalescence results
and vice versa. Wright’sFST is defined as.

FST =
f0 − f

1 − f
, (2.13)

wheref0 is the probability of identity of two sequences sampled fromthe same
deme, andf is the probability of identity of two sequences sampled sampled at
random from the collection of demes. Much work on structuredpopulations is
done in terms ofFST . To evaluate these in the newer Coalescent framework,FST

must be expressed in terms of coalescence times. An advantage of the approach is
that drift, migration and mutation are independent processes under the Coalescent.

If we assume a Poisson process of mutation, the probability of identity by de-
scent of two sequences, is simply the probability that none of them were subject
to a mutation before the time where the pair coalesced. This probability is e−θt,
whereθ is the scaled mutation rate4Nµ, andt is time. If we letT0 andT denote
the time to the coalescence of two sequences sampled from thesame and sampled
randomly from the collection of demes, respectively, then
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f0 = E[e−θT0 ], (2.14)

(Hudson 1990). Analogously

f = E[e−θT ]. (2.15)

Thus, using (2.13) we obtain

FST =
E[e−θT ] − E[e−θT0 ]

1 − E[e−θT ]
, (2.16)

(Wilkinson-Herbots 1998). This is the exactFST value. Slatkin (1991) gave an
approximation to the exact result, which is actually (2.16)in the limit θ → 0. Using
l’Hôpitals rule on (2.16) we get

F̂ST = lim
θ→0

FST =
E[T ] − E[T0]

E[T ]
. (2.17)

FST measures based on coalescence times do not make full use of the infor-
mation provided by DNA sequences. It only uses the information on coalescence
times for sequences pairs, and not the information on tree structure also contained
in sequence data. Nevertheless, it is used extensively in the studies on population
structure.

2.2 General Effects of Structuring

Before we embark on the results obtained for structured populations, an intuitive
understanding of the effects of structuring a population, may be a valuable tool
in understanding what follows. Generally, structuring of apopulation results in
three different effects, that may produce a Coalescent deviating from the standard
Kingman Coalescent:

• Coalescence Preclusion: The relocation events in the history of the sample
or the mode of sampling, may locate lineages among demes so that some
pairs of lineages are not able to coalesce. That the number ofpairs of lin-
eages that can potentially coalesce is reduced, obviously reduces the overall
coalescence rate. When only one lineage remain in each separate deme, no
coalescences can occur, until relocations bring pairs of lineages into the same
deme. The time elapsing where all lineages are precluded from coalescing
will be denoted “relocation waiting time”.

• Early coalescences/Aggregation: Relocation events or the lack of relocation
events may leave large parts of the sample in a subsection of the population.
This will result in a larger coalescence rate, since lineages from the sam-
ple will then constitute a larger part of the total number of lineages in the
subsection concerned. This may be the case if large parts of the sample is
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taken from one deme. In this case several pairs of lineages have an elevated
probability of coalescing before the sample spread other demes. This effect
is denoted “early coalescences”. A similar effect arises ifrelocation is asym-
metric in a way that makes lineages collect in one or a few demes. In this
case the coalescence rate is also elevated. This effect is denoted “aggregation
of lineages”

• Local Drift Difference: When lineages are relocated to other demes, the
genetic drift regime imposed on the them is most likely changed. This is
obviously the case when a lineage is relocated to a deme of different size
than that of the one it was located in before. In addition, as will be addressed
in chapter 3, different demographical regimes between demes, may result in
local drift differences

These effects will be addressed as they appear in the following.

2.3 General Migration Regimes

In this section I will consider the four basic migration scenarios. This section is
intended as a help to grasp the biological implications of the assumptions in back-
ward models. The four scenarios are combinations of two properties of relocation,
Namely, whether it is isotropic and whether it is conservative. Migration is denoted
isotropic, if the relocation probabilities are the same forall demes. It is conserva-
tive, if the number of individuals relocating into a deme is equal to the number
that relocates out of the same deme. This assumption obviously have the same im-
plications whether it is expressed in terms of the forward orthe backward model.
Formally, in terms of the backward model, we must have that

Ni

∑

j 6=i

rij =
∑

j 6=i

rjiNj (2.18)

or ∑

j

rjiNj − Ni = 0 (2.19)

The four general migration scenarios are:

1. Isotropic and conservative: As seen from (2.18), this implies that all deme
sizes are equal. That both relocation rates and deme sizes are equal for all
demes implies that the forward and the backward migration matrix are the
same. Hence, in the forward model, the same number of individuals/gametes
emigrate from each deme, with an even probability of ending up in any of
the other demes. That is, the number of immigrants and emigrants are not
just the same for each deme, it is also the same between demes.

2. Isotropic and non-conservative: Using (2.18) implies, that if the backwards
migration matrix is isotropic, migration can not be non-conservative unless
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the deme sizes are uneven. Since migration rates and relocation probabilities
do not refer to the same deme, this implies that the forward migration rates
are not the same among demes, even though the relocation probabilities are.
Hence, in terms of the forward setting, we have a set of demes with uneven
migration rates and either a net influx or net efflux of individuals/gametes in
each deme.

3. Non-isotropic and conservative: If the migration rates are not the same be-
tween demes, nor are the deme sizes, if migration is to be conservative. Note
that conservative migration only means that the net influx and the net efflux
from each deme is the same, not that the number of migrants exchanged, is
the same for all demes, or that the exchange of individuals/gametes between
pairs of demes is symmetric.

4. Non-isotropic and non-conservative: Nothing general can be said about these
settings, besides that they are not included in the cases described above. A
special case of this scenario is symmetric forward migration rates.

2.4 The Coalescent in an Island Model

In this section, structuring in the island model will be considered. In the island
model, no physical distance between demes is involved. However, this does not
mean that demes separated by varying physical distance can not be modelled. If
larger physical distance is assumed to lower migration probability, features of non-
abstract structure can be included in the model, by setting the relocation probabili-
ties between more distant demes to smaller values.

2.4.1 Two Sequences

This section will deal with some special features of the simple two-sequence case.
As already mentioned, comparing results for branch length and number of segre-
gating sites is a simple matter of scaling, if a Poisson process of mutation is as-
sumed. For reference, recall that the number of differencesbetween two sequences
sampled from an unstructured panmictic population is givenby

E[S] = 2Neµ, (2.20)

(Kimura 1969)

V ar[S] = (2Neµ)2, (2.21)

whereµ is the mutation rate per DNA sequence, andNe = NT is the effective
population size of haploid individuals. In coalescence terms, (2.20) follows from
the fact that the expected coalescence time of the to sequences in this case isNe, so
that the total branch length separating the two sequences is2Ne, and from assuming
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a Poisson process of mutation. Hence, the expected coalescence time is obtained
by scaling with2µ, which is the rate of mutation in both lineages. Scaled withNe

the mean and the variance of the coalescence time are both equal to one. In the
following, results for expected coalescence time, and for number of segregating
sites and total branch length will be listed in parallel, since they are so readily
convertible.

Lets now turn to a structured population. Notohara (1990) gave the following
general results for the expected coalescence time for two sequences in a system of
two demes.

E[T |(2, 0)] =
c1(3r1 + r2) + 4c1c2NT (r1 + r2)

2

(r1 + r2) + 4(c1NT r2
1 + c2NT r2

2)
(2.22)

E[T |(1, 1)] =
c1(2r1 + r2) + c2(r1 + 2r2) + 4c1c2NT (r1 + r2)

2 + 1

(r1 + r2) + 4(c1NT r2
1 + c2NT r2

2)
(2.23)

E[T |(2, 0)] =
c2(r1 + 3r2) + 4c1c2NT (r1 + r2)

2

(r1 + r2) + 4(c1NT r2
1 + c2NT r2

2)
(2.24)

(2,0) denotes sampling from two genes from deme one and zero from deme two.
(Takahata (1988) gave a general but even more complicated result for D demes.)
These results are only included to show the complexity of general analytical results
even for very simple systems. Below some simpler special cases will be consid-
ered.

If migration is both isotropic and conservative,implying that all deme sizes and
relocation probabilities are even, the results reduces toE[T |(2, 0)] =
E[T |(0, 2)] = 1 andE[T |(1, 1)] = 1 + 1/2R, whereR = NT r. This was origi-
nally obtained by Li (1976) who showed, that in a system ofD demes the number
of differences separating two sequences sampled from the same deme, and from
different demes is given by

E[S(s)] = 2DNµ (2.25)

E[S(d)] = 2DNµ + (D − 1)
µ

r
, (2.26)

whereNe = DN = NT , if each deme is panmictic. The subscripts signifies
whether the two sequences in question are sampled from the same or from two
randomly chosen different demes. Rescaling as above, (2.25) and (2.26) become

E[T (s)] = 1 (2.27)

and

E[T (d)] = 1 +
D − 1

2R
(2.28)
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Figure 2.1: The dependence of the expected coalescence timeof two sequences on the
number of demes, D and the scaled relocation probability, R,when sampling the two se-
quences from different demes.

respectively, (Notohara 1990), (Hudson 1990) and (Hey 1991). When sampling
from different demes, the dependency on structure is straightforward. The lower
the relocation probability, the longer the relocation waiting time. As shown in
figure 2.1 this effect is stronger the larger the number of demes, since this reduces
the probability that the two lineages find each other in the same deme. Note also,
that the effect of a higher relocation probability is stronger in a more subdivided
population. In contrast, when sampling from the same deme, the mean coalescence
time is independent of the backward migration matrix and thenumber of demes the
population is subdivided into. It seems counterintuitive,that relocation probability
would not play a role, and surely is does, but the effect of early coalescences and
the effect of migration waiting time cancels out, so that no effect of deme sizes
or relocation probabilities is seen in the mean coalescencetime. The variance of
coalescence time, however, shows a dependency onD andR for both both modes
of sampling:

V ar(T (s)) = 1 +
D − 1

DR
(2.29)

V ar(T (d)) = 1 +
D − 1

DR
+

1

4R2
. (2.30)

This is straightforwardly obtained from the result of Hey (1991). The dependence
of (2.29) on relocation probability is intuitively obvious. A lower relocation prob-
ability will result in a stronger affect of both early coalescences and relocation
waiting time. This implies, that the probability of short and very long coalescence
times will increase, thereby increasing the variance.

Slatkin (1987) elaborated on the result by Li, by showing that (2.25) also holds,
if migration is only isotropic and not conservative. In thiscaseE[Ss] is calculated,
by weighting each deme by the reciprocal of the deme size, so that E[S(s)] is a
weighted average ofS(s) over all demes,
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E[S(s)] =
D∑

i∈S 1/Ni

∑

i

(S
(s)
i /Ni)/D = 2N (h)Dµ, (2.31)

whereN (h) designates the harmonic mean of the deme sizes,D is the number of
demes, andS(s)

i the expected number of segregating sites between two sequences
sampled from demei. HereNe = DN (h). Scaling with2DNµ The expected
coalescence time is obtained

E[T (s)] =
N (h)

N
=

D

N
∑

i∈S 1/Ni
=

D

D−1NT

∑
i∈S 1/ciNT

=
D2

∑
i∈S c−1

i

,

(2.32)
whereN denotes the arithmetic mean of the deme sizes. Note that (2.32) is a result
for sequences both sampled in a randomly chosen deme, and nota result applicable
to any particular deme, as is (2.27). On the contrary, the expected number of differ-
ences for two sequences sampled in some particular deme, is indeed expected to be
dependent on migration. Since migration is isotropic, the relocation waiting time
when the first lineage relocates from the sampling deme is thesame for all demes.
On the contrary, the relation between coalescence rate and relocation probability
is not the same for demes of different size. This implies thatthe effects of early
coalescences and relocation waiting time will not be the same among demes, and
will thus only averagely cancel out, as indicated by (2.32).Two sequences sam-
pled from a small deme, will have a shorter expected coalescence time, whereas
sequences sampled in large demes will have a shorter one. Only whenci = c for
any i, the result is equally valid for the collection of demes, andeach particular
deme. (2.32) shows that if the sizes of the demes are not the same, the expected
number of differences, will indeed be affected by structuring, even though the ef-
fect is obviously still independent of the backward migration matrix. This follows
from the fact that the harmonic mean is always smaller than orequal to the arith-
metic mean. Hence, with isotropic migration, the expected coalescence time for
two sequences sampled in the same deme, will always be lower than one, except if
ci = c for all i, in which case the means are equal. In this situation migration is
isotropic and conservative, and (2.32) collapses into (2.27).

Strobeck (1987) showed that (2.25) is also obtained, with the assumption of
week evolutionary forces, as described above for the structured Coalescent. That
is, the probability that two events per generation is negligible, be that relocation
events, two mutation events, or a combination of both. Underthis simplifying
assumption he showed that the average expected number of differences is indepen-
dent of the backward migration matrix, in the case where migration is conservative,
but not necessarily isotropic. In this case, the number of segregating sites is given
by

E[S(s)] =
∑

i

NiS
(s)
i /NT =

∑

i∈S

ciS
(s)
i = 2NT µ. (2.33)
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Comparing (2.25), (2.31) and (2.33) implies that the condition that makesNe and
thus the expected coalescence time independent of both demesizesand the back-
wards migration matrix is not whether migration is isotropic, which is the premise
shared by (2.25) and (2.31), but rather whether it is conservative, which is the
premise shared by (2.25) and (2.33).

Recall the interconnection betweenFST and expected coalescence time de-
scribed in section 2.1.5. A result forFST can be obtained using the Laplace trans-
forms of the distributions ofT (s) andT (d). T ∗, the expected coalescence time of
two sequences sampled at random among all the demes, is obtained through the
expectations ofT (s) andT (d). Hence for isotropic and conservative migrationFST

is given by

FST =
1

1 + 2RD2/(D − 1)2 + θD/(D − 1)
. (2.34)

This approach is due to Wilkinson-Herbots (1998). Slatkin’s (1991) approximate
result for the finite island model is

F̂ST =
1

1 + 2RD2/(D − 1)
. (2.35)

2.4.2 More than Two Sequences

For samples of more than two sequences, the effects of structuring are still basicly
the same. However, the spatial distribution of the sample isno longer necessarily
the simple “together or apart” making the scaled coalescence rate in each deme
1/ci or zero. Hence, the coalescence preclusion effect of structuring is no longer
entirely a relocation waiting time effect. Rather, the coalescence rate now depends
on the number of pairs located in the same demes so that they can potentially
coalesce,

∑
i∈S

(
αi

2

)
, as well as the sizes of these demes. Singletons obviously

have a particularly strong effect on coalescence rate, since these are precluded
from coalescing with any other lineage, and in effect does not contribute to the
coalescence rate at all. Further, the effect of structuringis, apart from migration
rates and deme sizes, dependent on the sample size relative to the number of demes.
The more demes, the more strongly the sample may be separated, and the fewer
the lineages the fewer demes it takes to separate them. This is the effect depicted
in figure 2.1.

Dependence on Sampling

The dependency of sampling is another way of saying that it matters what initial
position the sample is in at time zero. The larger the relocation probabilities the
less is this dependency. In the limit with infinitely strong migration, there is no
dependence on sampling. This special case is considered in section 2.4.4.

23



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

n=8
n=6
n=4

i

Figure 2.2: For two demes, the figure shows the coalescence rate ofn remaining lineages,
if n− i is located in one deme andi lineages i the other. The rates are normalised with the
coalescence rate when all lineages are in one deme.n = 4, 6 and8.

If we assume even deme sizes and even drift regimes in all demes, the effect of
some mode of sampling depends on the extent to which the stageis set for either
coalescence preclusion or early coalescences.

The number of lineage pairs that are not precluded from coalescing is, in the
case of two demes, given byi(i−1)+(n−i)(n−i−1), wheren is the total sample
size andi is the number of sequences sampled from one of the demes. Hence, if λ0

s

denotes the instantaneous coalescence rate at the time of sampling for a structured
sample, andλ0 denotes this rate when sampling all sequences from the same deme,
the dependence on sampling can be expressed as the fraction

λ0
s/λ

0 =
i(i − 1) + (n − i)(n − i − 1)

n(n − 1)
. (2.36)

In figure 2.2 equation (2.36) is plotted as a function ofi for different sample sizes.
Note how the implications of structuring are larger for smaller samples. This is
because singletons, and the stronger effect these have on coalescence preclusion,
are more probable for smaller samples.

Early coalescences are a result of low relocation probabilities relative to the
coalescence rate. Hence the effect may result from both low relocation probabil-
ities, and from sampling several sequences from the same deme. With a lot of
demes and a low relocation probability, sampling of the sequences from the same
or a few demes, may greatly diminish the time to the most recent common ances-
tor. This is because most or all lineages from each deme will coalesce before they
are spread out into solitude, and thus imposed by the extra waiting time until a
relocation into an occupied deme. Recall that for a sample taken from only one
deme, the probability that all of the lineages coalesce before any of them migrate is
∏n

i=2

(
i
2

)
/
((

i
2

)
+ irijN

)
(Slatkin 1989). That this is a sum of weighted exponen-

tial intensities gives a good perception of the interplay between early coalescences
and relocation rate.
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Tree Topology

The tree describing the ancestry of the sample can taken!(n − 1)!/2(n−1) distin-
guishable topologies, and the effects of sampling is manifested in the topology of
the tree.

Early coalescences will result in monophyletic trees, thatis, trees where se-
quences sampled from the same deme, coalesce to one ancestorfor each deme,
before any relocation events occur. The larger the relocation probabilities and the
more distributed the sample, the more probable will para- orpolyphyletic trees
become. Hence, given the mode of sampling the topology of thetree contains
some information about the migration rates. This information was incorporated
into a cladistic measure of migration by Slatkin and Maddison (1989). For a sam-
ple from two demes each topology may be characterised by a minimal number of
relocation events needed. The approach is a simulation based one, building a cat-
alogue of these characteristic minimal relocation events for an array of relocation
probabilities.

Takahata and Slatkin (1989) have studied, under what conditions the three dif-
ferent phylogeny types will result. The probabilities are obtained recursively. With
the assumption thatrij = r for all i andj the probabilities of mono- and paraphyly
when sampling two sequences from one deme and one from the other, are

P(mono) =
1 + 7R/6 + R2/3

1 + 5R/2 + R2
(2.37)

P(para) = 1 − P(mono), (2.38)

since we can not have polyphyly with three sequences.R = NT r. According to in-
tuition P(mono) → 1 andP(para) → 0 asR → 0 The results for two sequences
sampled from each deme are not given here, but their graphical representation in
figure 2.3 give a good perception of the dependency onR. The probability of
monophyly is high if the expected number of migrants from each deme is smaller
than one.

Their approach, however, is not feasible for arbitrary sample size because the
number of Markov states quickly becomes to large to handle. As an approximation
it can be assumed that there will be at most one migration event before all demes
in each deme have found a common ancestor. Under that approximation the prob-
ability of monophyly of a sample taken from two demes obviously correspond to
the product of the probabilities for non-immigrant ancestry (see equation (2.12))
for each deme (Slatkin & Maddison 1989).

P(mono) = P(α1)P(α2) =

α1∏

k=2

k(k − 1)

k(k − 1) + kR
×

α2∏

j=2

j(j − 1)

j(j − 1) + jR
(2.39)

whereα1 sequences are taken from deme one andα2 sequences are taken from
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Figure 2.3: The probabilities of monophyly, paraphyly and polyphyly as a function ofR
for a sample of four genes. Two sequences are sampled from each of two demes. Migration
is isotropic. Takahata and Slatkin (1989)

deme two. The probability of paraphyly is stillP(para) ≈ 1 − P(mono) , since
under the assumption of low levels of migrationP(poly) ≈ 0.

Expected Coalescence Time

As the number of sampled sequences grows it becomes increasingly difficult to find
the expected coalescence time analyticly. The number of Markov states rapidly
becomes immense, and so does the number of linear equations,that must be solved
simultaneously, to get an exact solution for the mean.

Following the recursive approach of Tajima (1989) Notohara(1990), and Wake-
ley (1998), stating the process as a Markov chain withX states and infinitesimal
generatorQ, it is possible to calculate the expected time to the most recent common
ancestor, or to any other branch level in the tree as

E[Ti] =
1

qi∗
+

X∑

j=1,j 6=i

qij

qi∗
E[Tj ]. (2.40)

Takahata (1988) approached the problem in essentially the same way. He
showed, that for two demes of even size, and with isotropic and conservative mi-
gration, the expected coalescence time from three to two sequences is given by

E[T (2, 1)] =
3 + 2R

6 + 6R
(2.41)

E[T (3, 0)] =
1 + 2R

6 + 6R
(2.42)

As R → 0, E[T (2, 1)] → 1
2 and E[T (3, 0)] → 1

6 . As R → ∞, E[T (2, 1)]
and E[T (3, 0)] → 1

3 , which is equal to the expected coalescence time of three
sequences,1/

(
3
2

)
, in the standard Kingman Coalescent. The Coalescent under
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Figure 2.4: The expected coalescence time as a function of the number of lineages in the
branch level. The initial state for each branch level is([n/2], n − [n/2]), where[n/2]
denotes the integer part ofn/2. The extreme value of 10.93 in the last branch level, cor-
responding toR = 0.1 owes to the relocation waiting time before the lineages become
located in the same deme. This is expected to be1/R

this strong migration limit is returned to in section 2.4.4.Note that, for smallR,
the coalescence time for three sequences sampled in the samedeme, is smaller than
is expected from the Kingman Coalescent. This results from the fact that sampling
leaves the lineages aggregated in a subsection of the population, so that a smallR
results in a strong early coalescence effect. In the limitR → 0 the expectations
correspond to the time to the first coalescence of two and three sequences in a
population of sizeNT /2.

Generally the fewer lineages there are to distribute among some number of
demes, the stronger the effect of coalescence preclusion. Hence, the effect of coa-
lescence preclusion is stronger in the last part of the tree.This will prolong the last
branch levels and thus result in an alteration in the relative proportions of branch
levels, compared to the standard Kingman Coalescent. For a system of many demes
the effect will not be so pronounced, since the sample in thiscase most probably
will be highly distributed also in the first branch levels. This means that the pro-
longing effect will be strong in all branch levels, and that the change in the relative
proportions of the branch levels will be small. When the number of demes becomes
very large relative to the sample size, the relative proportions of the the standard
Kingman Coalescent are obtained for the branch levels not negligibly short. This
case is considered in section 2.4.5.

In these complicated matters simulation quickly becomes anappealing alter-
native. Takahata (1988) simulated the mean time between coalescence events, for
two demes of equal size. He addressed only the cases where thelineages are evenly
distributed between the two demes at the beginning of the branch level. Some of
his results are shown in figure 2.4. This is only a part of the general picture, but bar-
ing this in mind, it nevertheless presents some general features and the magnitude
of the effect of structuring in the different branch levels.The effect of is generally
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most conspicuous in the last one or two branch levels. If the sample is not taken
evenly among demes, as in figure 2.4, the effect of longer lastbranches will be even
more distinct, since early coalescences will make the first branch levels shorter.

As a shortcut from simulations in these complicated matters, approximations
are of great value. Takahata (1991) investigated the Coalescent under the low mi-
gration limit for a set of equal sized demes and isotropic migration. In this case
it is posited, that the relocation probability is very low relative to the coalescence
rate within demes. Hence, if the sample is taken fromd of the D demes, it can
be assumed, that the time it takes for all the sequences, to find one common an-
cestor in each deme, is very small compared to the time it takes for the remaining
lineages to find a common ancestor. The latter time is much longer, since the re-
location events bringing two singletons together in a deme are very rare. When
this does happen, it is additionally assumed, that the probability of a coalescence
before one of the lineages relocates from the deme again is one. This assumption
is valid since it is assumed that the scaled relocation probability is much smaller
than one. In conclusion, if the time to find a common ancestor in each deme is
negligible compared to the time it takes for the lastd lineages to find a common
ancestor for the entire sample, the time to the most recent common ancestor of the
entire sample is approximated by the time it takes for the last d singletons to find
a common ancestor. The mean time to the most recent common ancestor of this
simpler process is given by

ELow[TT ] =
D − 1

R

(
1 −

1

d

)
, (2.43)

whereR = DNr, and the subscript,T , signifies total expected coalescence time.
Under these conditions,d is obviously an important parameter in determining the
total expected coalescence time. On the contrary, it is onlyweakly dependent on
D.

If, on the other hand, the scaled relocation probability is very large, there is no
dependence of sampling, and the total expected coalescencetime is approximated
by that of a panmictic population (The strong migration limit will be described in
section 2.4.4)

EHigh[TT ] = 2

(
1 −

1

n

)
. (2.44)

Takahata showed through simulations, that the low and the high migration approx-
imation is precise for4Nr ≤ 0.1 and≥ 10 respectively. He further suggested an
interpolation of the two results, to cover the intermediateparameter range

EInterpol.[TT ] =
(d − 1)(D − 1)

dR
2

(
1 −

1

n

)
(2.45)

For the appropriate magnitude of migration each of these aregood approxima-
tions. However, it is obviously a problem that previous knowledge of at least the
magnitude of migration is needed to pick the right approximation.
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Total branch Length

With a sample larger than two, the conversion between coalescence time and total
branch length or number of segregating sites, is not possible unless we know the
branch level lengths of the tree. Hence, it is more straight forward to calculate it
directly, as described above for expected coalescence time:

E[T(i)] =
k

qi∗
+

X∑

j=1,j 6=i

qij

qi∗
E[T(j)]. (2.46)

Note that the nominator isk in the first term. k denotes the number of lineages
left from the sample. By this approach Wakeley (1998) presented results for the
total branch length of trees from samples of three sequencesassuming isotropic
and conservative migration. As a reference, recall that thetotal branch length for
three sequences in a panmictic population of sizeNT = DN is three.

E[TB(3, 0, 0)] = 3 (2.47)

E[TB(2, 1, 0)] = 3 +
D − 1

2DNm
(2.48)

E[TB(1, 1, 1)] = 3 + 3
D − 1

2DNm
, (2.49)

where the subscript,B, signifies total branch length. As for two lineages, the
expected total branch length, and thus the number of segregating sites in a sample
of three sequences, is independent of migration, if the sample is taken from one
deme. In other words, it is not possible to to make inferenceson the level of of
structure from the mean number of segregating sites from this type of sample, as it
is not for two sequences from the same deme.

The results (2.48) and (2.49), show an expected dependence on sampling. The
more distributed the sample is among demes, the stronger is the dependency on
migration, since the possibility for early coalescences decrease as the sample is
taken from more demes. The mean total branch length for four sequences, sampled
in the same deme, is not independent of the backwards migration matrix (Wakeley
1998).

Based on the results for one, two, three, four and five sequences, Wakeley
suggests an expression that might approximate the total branch length for arbitrary
n andD:

E[TB(α1, α2, . . . , αd)] ≈ 4

(
n−1∑

i=1

1

i
+

1

4R∗

d−1∑

i=1

1

i

)

, (2.50)

whereR∗ = NDr/(D − 1) is the scaled relocation probability of reaching one
particular other deme, andd is the the number of demes that the sequences are
sampled from. The accuracy of the approximation depends onD, n and how the
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lineages are sampled among the demes. Forn = 4 sampled from one deme, the
approximation is fairly accurate, and the error is at most 1%. As the number of
demes approaches infinity the value for the sample configurations(1, 1, . . . , 1) and
(2, 1, . . . , 1) converge to the value obtained by (2.50)

The few existing exact results and approximations are for small samples and
very simple model settings. Beyond this level of complexity, and for large samples,
simulation is the most appropriate approach. For a model of two demes, Tajima
(1989) has simulated the dependency of the mode of sampling for the number of
segregating sites. The figures 2.5 through 2.10 summerises some of his results.
Below, the main features of the figures are listed.S(i, j) designates the expected
number of segregating sites in a sample ofi sequences taken from deme one and
j sequences taken from deme two. Note that the figures use different notation for
population sizes and relocation probabilities.

Isotropic and Conservative Migration: (figure 2.5) The effects of sampling are
symmetric because of the complete symmetry of the model. Thevalues forS(n/2, n/2)
increase asR decrease, and the effect of coalescence preclusion becomesstronger.
S(n, 0) and S(0, n) are smallest forR = 1. This is where the effect of early
coalescences is largest compared to the effect of coalescence preclusion.

Conservative Migration N1 < N2 : (figure 2.6) AsR decreasesS(n, 0) decreases
since the lineages spend more time in the small deme they are sampled in. As
R decreasesS(0, n) increases because the lineages spend more time in the large
deme. Note in addition, that they do not decrease and increase at the same rate.
This is due to the fact that the relocation probabilities arenot the same. We have
thatr1N1 = r2N2 implying thatr1 > r2. Hence, ifN is constant and R becomes
a factor smaller, ther1 will decrease more in absolute value thanr2

Isotropic Non-Conservative Migration: (figure 2.7) As the relocation rates in-
crease, the values converge to those expected in a panmicticpopulation of size
4N1N2/(N1 + N2). That is, as the the dependence on sampling decreases, the
total branch length behaves as in one population with size equal to the harmonic
mean of the deme sizes.

Unidirectional Relocation into a larger deme N1 < N2 : (figure 2.8) AsR in-
creases, the values ofS(n, 0) increases converging to the values ofS(0, n) as
R → ∞, in this limit case, all lineages will instantaneously relocate to deme two.
S(0, n) of cause is unaffected by migration.

Unidirectional Relocation into a smaller deme N1 > N2 : (figure 2.9) AsR in-
creases, the values ofS(n, 0) decreases converging to the values ofS(0, n) as
R → ∞. S(0, n) is of cause unaffected by migration.

Unidirectional Relocation into a deme of the same size: (figure 2.5)S(n, 0) de-
creases asR increases.S(n, 0) is large whenR is small. S(0, n) is of cause
unaffected by migration.
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Figure 2.5: Expected number,S(i, 50− i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and50 − i are sampled from deme 2.Ri =
4Nirij , θi = 4Niµ. θ1 = θ2 = 1 andR1 = R2 are assumed.•, R1 = 0.1; ◦, R1 = 1; �,
R1 = 10; ♦, R1 = ∞.

Figure 2.6: Expected number,S(i, 50− i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and50 − i are sampled from deme 2.Ri =
4Nirij , θi = 4Niµ. θ1 = 0.1, θ2 = 1.9 andR1 = R2 are assumed.•, R1 = 0.1; ◦,
R1 = 1; �, R1 = 10; ♦, R1 = ∞;
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Figure 2.7: Expected number,S(i, 50− i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and50 − i are sampled from deme 2.Ri =
4Nirij , θi = 4Niµ. θ1 = 0.1, θ2 = 1.9 andR2 = 19R1 are assumed.△, R1 = 0.01; •,
R1 = 0.1; ◦, R1 = 1; ♦, R1 = ∞;

Figure 2.8: Expected number,S(i, 50− i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and50 − i are sampled from deme 2.Ri =
4Nirij , θi = 4Niµ. θ1 = 0.1, θ2 = 1.9 andR2 = 0 are assumed.•, R1 = 0.1; ◦, R1 = 1;
�, R1 = 10; ♦, R1 = ∞;
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Figure 2.9: Expected number,S(i, 50− i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and50 − i are sampled from deme 2.Ri =
4Nirij , θi = 4Niµ. θ1 = 1.9, θ2 = 0.1 andR2 = 0 are assumed.•, R1 = 0.1; ◦, R1 = 1;
�, R1 = 10; ♦, R1 = ∞;

Figure 2.10: Expected number,S(i, 50−i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and50 − i are sampled from deme 2.Ri =
4Nirij , θi = 4Niµ. θ1 = θ2 = 1 andR2 = 0 are assumed.•, R1 = 0.1; ◦, R1 = 1; �,
R1 = 10; ♦, R1 = ∞;
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2.4.3 Effect of different deme sizes

The effective sizes of demes determine the coalescence ratein each deme. As noted
above, unidirectional relocation into a smaller deme will aggregate lineages under a
stronger drift regime, and thus shorten the last branch levels. Analogously unidirec-
tional relocation into a larger deme will prolong the last branch levels (in addition to
the effect of coalescence preclusion. If relocation is not unidirectional, the effects
of deme sizes become difficult to untangle from effects pertaining to the relocation
regime, such as coalescence preclusion, and early coalescences/aggregation of lin-
eages. If relocation probabilities are very large, each deme size can no longer have
an separate effect on tree structure, since in this case, thetime spent in one deme
between relocation events is very small.

2.4.4 The Strong Migration Limit

The limits of many of the results listed above indicate that the effect of struc-
turing declines as migration becomes large. That is, the relocation waiting time
becomes smaller. In the limit where migration is infinitely large, the waiting time
is infinitely small. This limit, the strong migration limit,was first investigated
by Nagylaki (1980), who showed that the ancestral relationship of lineages in the
population in this case behaves as in a panmictic population. However, the effec-
tive population size,Ne, and thus the expected coalescence time, is smaller than
of equal toNT . Nagylaki designated the resulting effective population size the
migration effective population size.

Formally, the strong migration limit is obtained by passingNi → ∞ for all i
without making the assumption thatlimNi→∞ ri∗Ni = Ri∗. In other words, the
backwards migration matrix is held constant as the deme sizes go to infinity. Since
this implies that asRi∗ → ∞, a relocation event is infinitely more probable than a
coalescence event. As a result, there are infinitely many relocation events between
each coalescence event. This means, that the spacial distribution describing the
probability of finding a lineage in the different demes, is stationary. This distribu-
tion can also be interpreted as describing the fraction of the time that a lineage will
be located in the different demes.

This may not be meaningful in a biological sense, but the limit has properties
that can be exploited, if a model can be approximated to it. For the approximation
to be justified, eachRi∗ does not have to be large per se, only so much larger com-
pared to the coalescence rate, that we can assume that we haveso many relocation
events between each coalescence event, that the result is effectively the same.

Migration Effective Population Size

Nordborg (1997) gives a simple and intuitive interpretation of the migration ef-
fective population size for two demes and a sample of two sequences. If the time
scales of the Coalescent process and the relocation processcan be assumed to be
separate as described above, the fraction of the time that a lineage is located in
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deme one is equal to the normalised rate at which lineages relocate into deme one,
r21/(r12 + r21). Since the location of the lineages are independent, the fraction
of the time that both sequences are located in deme one isr2

21/(r12 + r21)
2. The

lineages can only coalesce when they are located in the same deme, and when they
are, they will do so at a rate1/ci. That means that the coalescence rate can be
expressed as the sum of the coalescence rates of the two demes, each weighted by
the time, that both lineages are expected to be located together in the deme:

λ =
r2
21

(r12 + r21)2
1

c1
+

r2
12

(r12 + r21)2
1

c2
= 1 +

(r12c1 − r21c2)
2

(r12 + r21)2c1c2
. (2.51)

SinceNe = NT /λ, Ne will always be equal to or smaller than one. Clearly, it will
be one only ifr12c1 = r21c2. In this case migration is conservative.

Since the Coalescent behaves as in a panmictic population ofsizeNe in the
strong migration limit, the Coalescent is a standard Kingman one, with population
sizeNe. This implies that the coalescence rate in units ofNe for k lineages, is
simply

(
k
2

)

Nagylaki’s more general formulation of the migration effective population size
is

Ne =
1

λ
NT , λ =

∑

i∈S

ν2
i /ci, (2.52)

(Nagylaki 1980), whereci = Ni/NT andν = {ν1 . . . νD} is the stationary spacial
distribution of a lineage. Hence,νi is the probability of finding one of the lineages
in demei. ν and 2 are thus parameters in the a multinomial distribution describing
the probability of a particular distribution of the lineages. ν is obtained as the
left eigenvector of the backward migration matrix corresponding to the eigenvalue
one1. To explain,λ is the sum of the probabilities, that two lineages are found in
the same deme (the fraction time they spend together in that deme) multiplied by
the coalescence intensity for two lineages in that deme.1/λ can be expressed as a
harmonic mean, and since

∑
i ci = 1 we have that

1/λ = 1

/∑

i

νi

(ci/νi)
≤
∑

i∈S

νi(ci/νi) = 1, (2.53)

since the harmonic mean is always less than or equal to the arithmetic mean.
Hence,λ ≥ 1 andNe ≤ NT with equality if and only ifν = c, i.e. that we
have for all demes, that the probability of finding a lineage in a deme is equal to
the fraction of the total population size which that deme constitutes. IfR denote
the backward migration matrix, we have thatνTR = νT (νT is the pranspose of
ν), implying thatνi =

∑
j νjrji = νirii +

∑
j: j 6=i νjrji Hence,Ne = NT if and

only if

1A left eigenvector with corresponding eigenvalue one, is the stationary distribution for a matrix,
since that eigenvector can be multiplied by the matrix without changing.
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cirii +
∑

j∈S:j 6=i

cjrji = ci. (2.54)

Multiplying by NT on both sides, we see that this is only fulfilled when migration
is conservative. i.e. when the sum of all scaled relocation probabilities including
the one representing no relocation, is equal to the size of the deme.

With isotropic migration and uneven deme sizes, the migration effective popu-
lation size is given by

Ne = DN (h), (2.55)

whereN (h) denotes the harmonic mean of the deme sizes (Nagylaki 1998).This
result is effectively the same as that of Slatkin (2.31), just for strong migration.

As far as the robustness of the strong migration approximation is concerned,
recall that Takahata showed that with even deme sizes and isotropic migration, the
strong migration approximation is valid as long as4Nr ≥ 10.

Total Tree Length

The expected time, in units ofNT , to the most recent common ancestor of the
sample, is not surprisingly given by

lim
Ri∗→∞

i∈S

E(Tn→1) =

(
∑

i∈S

ν2
i

ci

)−1

2

(
1 −

1

n

)
, (2.56)

(Notohara 1993), and in units ofNe as given by (2.52) the familiar result for the
Kingman Coalescent is obtained

lim
Ri∗→∞

i∈S

E(Tn→1) = 2

(
1 −

1

n

)
, (2.57)

(Kingman 1982b).

Location of the Common Ancestor

If the population is subdivided intoD demes, the Markov process of the structured
Coalescent hasD absorbing states, each corresponding to a common ancestor in
some of theD demes:εi = {α ∈ I; i ∈ S; αi = 1; 0 otherwise}. Following from
the fact that in the strong migration limit, the distribution of the lineages among
the demes is stationary, the probability of some particularlocation of the sample
is independent of any previous location. This implies, thatthe location of the
last two lineages is independent of the location of lineagesbefore the point in
time where the sample coalesced into these two remaining lineages. As a result,
the absorbing state of the Markov process is determined solely by the stationary
spacial distribution of the last two lineages, and the probabilities that the lineages
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will coalesce when located in the same deme. In conclusion, the probability of an
absorbing stateεi is given by

lim
Ri∗→∞

i∈S

P(εi| α) =
(ν2

i /ci)∑

j∈S

(ν2
j /cj)

for all α ∈ I, |α| ≥ 2, (2.58)

(Notohara 1993).

2.4.5 The Large D Approximation

The large D approximation, (Wakeley 1998, 1999 and 2001), isbased on the as-
sumption that the number of demes is so large, that it is very unlikely that a lineage
relocates to an occupied deme, and thus that the probabilitythat more than two
lineages collect in one deme is negligible.

Wakeley divides the ancestral process into a scattering phase and a collecting
phase. The scattering phase is the process ongoing from timezero until the all
remaining lineages are in separate demes. During this phase, only the probability
of coalescences between lineages in the same demes and relocation events to un-
occupied demes, need to be taken into account. Samplingni sequences in demei,
the probability of havingn′

i lineages in demei at the end of the scattering phase is

P(n′
i| ni) =

S
(ni)
n′

i

(2Mi)
n′

i

(2Mi)(ni)
, (2.59)

whereMi =
∑

j 2Nrij , S
(i)
j is an unsigned Sterling number of the first kind,

and x(r) = x(x − 1) · · · (x + r − 1). Since the events in the different demes
are independent, the density of the sample at the end of the scattering function is
P(n′| n) =

∏n
i=1 P(n′| n)

The collecting phase is a Markov process of relocations between unoccupied
demes, punctuated by rare relocation events to demes already occupied by a lin-
eage. Analogous to the approach taken by Takahata (1991) forhis low migration
approximation, Wakeley assumes, the collecting phase is somuch longer than the
scattering phase, that the entire process can be approximated by a description of
the collecting phase. This assumption is valid if the numberof demes is large
compared to the number of sequences in the sample.

Let p denote the stationary distribution of each lineage among the demes (see
section 2.4.4). This is a multinomial distribution with parameters one andπ =
{π1 . . . πD} whereπi is the probability of finding a lineage in demei. Let ri∗

denote the probabilities of a relocation event from demei to any other deme, and
e∗j the average probability that a relocation from some demei 6= j will be a
relocation to demej. The rate,ω, of relocations into occupied demes, is then given
by
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ω = 2

(
n′

2

)∑

i∈S

ri∗ πi

∑

j∈S

e∗j πj, (2.60)

wheren′ denotes the total number of demes left after the scattering phase. To
explain, this is the average probability that a particular lineage is located in one
particular deme and that it relocates from that deme, times the average probability
that it relocates to one particular deme and that one particular lineage resides in
this deme, times the number of pairs this can happen to, timestwo because the
relocation event may be in both directions. The time until the the next relocation
into an occupied deme is exponentially distributed with parameterω.

The probability that the deme, in which the two demes meet, isa deme of type
i is

fi =
e∗i∑

i∈S e∗j
πi. (2.61)

When this eventually happens, the lineages may coalesce before one of them relo-
cates again. The probability of this outcome, is a simple waiting of the exponential
intensities1/(1 + 2Niri∗). The average probability that coalescence event follows
from a relocation to an occupied deme is

∑

i∈S

1

1 + 2Niri∗
fi. (2.62)

The expected number of these punctuating events that elapsebefore a coalescence
takes place is geometrically distributed with parameterN−1/(N−1 + 2r).

Multiplying the probability of a relocation into an occupied deme (2.60) by the
probability that the outcome of such an event is a coalescence (2.62) the intensity of
the exponentially distributed time to a coalescence in the collecting phase becomes

λ = 2

(
n′

2

)∑

i∈S

ri∗ πi

∑

j∈S

e∗j πj

∑

i∈S

1

1 + 2Niri∗
fi. (2.63)

If N denotes the arithmetic mean of the deme sizes, then measuring time in
units of ND and lettingD → ∞, a Kingman Coalescent results with effective
population size

Ne =



2
∑

i∈S

ri∗ πi

∑

j∈S

e∗j πj

∑

i∈S

1

1 + 2Niri∗
fi




−1

. (2.64)

This means, that in the limit, where the number of demes is much larger than the
sample, the last part of the tree will behave as a standard Kingman coalescent for
a population size ofNe. This collecting phase will comprise the entire tree if only
one sequence is sampled in each sample deme.
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To find some specific measure e.g the time to the most recent common ances-
tor, the time to the second coalescence or the total branch length, the result must
be averaged over all possible outcomes of the scattering phase. Hence for some
sample configuration,n, the time to the most recent common ancestor is given by

P(TT (n) = t) =
∑

n′

P(TT (n′) = t) P(n′| n) (2.65)

Summing over all possible values oft give the expectation ofTT

E[TT (n)] =
∑

n′

E[TT (n′)] P(n′| n) (2.66)

This approach obviously eases the computational problems otherwise encoun-
tered when approaching the structured Coalescent. Wakeleycompared the approx-
imation to simulations and concluded that the largeD approximation is good as
long as the number of demes is at least three times the sample size.

2.4.6 Source-Sink Populations

The case of asymmetric migration is often denoted source-sink migration. How-
ever considering a source-sink system only as a system of asymmetric migration
with constant deme sizes is insufficient. The underlying reason for the source-sink
dynamic must be taken into account as well. This reason, as obvious as it may
seem, is that some demes are overproducers compensating forthe underproduction
in other demes. These local demographic differences will result in local differ-
ences in genetic drift, and thus influence the coalescence process. A more precise
definition of a source-sink functionality is: Asymmetric migration among demes
resulting from demographic differences among demes, serving to distribute surplus
individuals from overproducing demes between under-producing demes.

Pulliam (1988) drew attention to the fact that for many populations, a large
fraction of the individuals may be located in sink demes, andthat a small source
deme may potentially supply a large collection of sink demes.

A source-sink functionality as defined above, taking the underlying demo-
graphic differences among demes into account, has not been modelled in a Coa-
lescent framework. The following chapter will address the problem of source-sink
populations to its full extent, and investigate the effectsof these causative demo-
graphic differences among demes.
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Chapter 3

The Coalescent in Source-Sink
Populations

This chapter is devoted to investigate asymmetric migration in a system of con-
served deme sizes. A system where migration is non-conservative in the sense
described above, but where deme sizes are nevertheless in equilibrium. In such a
source-sink system, some demes are overproducers and others are under-producers.
Migration upholds the dynamic equilibrium of deme sizes by distributing the sur-
plus individuals among sinks. Hence, the equilibrium is a consequence of the
demographic properties of the demes.

From a data set we can maximally obtain the backwards migration matrix, i.e.
in the composite parametersNerij , and the fraction sizes of the demes,ci. Ne

denotes the total effective population size. Hence, the effects of demography on
local drift regimes due to a source-sink functionality between demes, can not be
distinguished from other effects on genetic drift and thus on effective deme sizes,
since the contribution of each effect will be confounded by the composite nature of
effective population size.

The Wright-Fisher model describes a population down to the composite param-
eters listed above that may maximally be obtained from a dataset. Here, however, I
aim to describe how demographic differences between demes may affect effective
deme sizes and effective population size. Since these effects can not be separated
from other effects on effective deme sizes, the scope of the Wright-Fisher model is
not sufficient to investigate this.

A source-sink dynamic must be considered in a Moran model, since this in-
corporates the demographic parameters in question. Below amodel with a scope
adequate to describe the nature of a source-sink functionality will be presented. In
brief, this is done by formulating a model that enables a separate investigation of
the effects of migration rates, deme sizes and demography effects.

The effect of varying demographic parameters among demes, on the divergence
of sampled sequences, will be considered in detail.
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3.1 Setting the Scene

I adopt the Moran model, that unlike the Fisher-Wright incorporates the birth and
death parameters, so crucial for this kind of modelling. Specifically we will con-
sider the situation where a set of two demesS = {1, 2} each of constant sizeNi

exchange migrants. The growth rates differ between demes, but asymmetric migra-
tion distributes surplus individuals among sinks, therebyconserving deme sizes.

In the Moran model, every unit time one lineage is randomly sampled to die
and one is randomly sampled to give rise to a new lineage. Hence, each time unit,
one lineage is copied and takes the place of one that dies. It is assumed, that the
lineage that dies may leave an offspring, and that an offspring may take the place
of the mother lineage. This implies that it does not matter whether the lineage to
die or the lineage to be split is sampled first. The birth and the death event may
each occur in any of theD demes.

Right after the birth and the death event a migration event may occur. The
coupling between the birth-death process, and the migration process determines the
stochasticity with respect to the equilibrium of deme sizes. In the model presented
here, these processes are completely coupled. That is, if the lineage that dies and
the one that is split are located in different demes, the surplus individual migrates
to the deme that is short of one individual. This precludes any fluctuation of deme
sizes. Migration is stochastic, as we shall see shortly, since this is a function of the
stochastic birth and death parameters.

Every deme is associated with three parameters: A per capitabirth parameter,
β, a per capita death parameter,δ, and a deme size,N . Hence,β is the number
of births per time per lineage, andδ is the number of deaths per unit time per
lineage. Thusβ − δ is the growth rate of the deme. Ifβ or δ are fraction numbers,
it is assumed that the individuals are added or removed randomly one at a time,
so that the parameters averagely hold. The deterministic parameters are kept for
convenience.

The expected life time of an individual in the Moran model (with continuous
time) is the mean of an exponential distribution. This implies that for any age,
there is a positive probability that a chosen individual becomes older. Whether
this is an appropriate description of life expectancy is arguable. If, however, it is
assumed that ageing plays a minor role relative to death by competition, predation
or disease, an exponential description seems reasonable.

Given the wider scope of the Moran model compared to the Wright-Fisher
model, structure can be modelled as a function of of birth anddeath rates in demes
and the covariance of birth and death events in different demes, and not only as a
function of migration as in the Wright-Fisher model.
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3.2 Formulation of a Structured Moran Model

When the newborn individual to be added to a deme in a Moran event is sampled
it is done from the collection of demes, weighted with the birth parameters and the
size of each deme, so that the probability of a birth event in demei is:

P (Bi) =
βiNi∑

k∈S βkNk

= bi, (3.1)

implying that

∑

i∈S

bi = 1. (3.2)

Analogously the probability of a death event in demei is:

P (Di) =
δiNi∑

k∈S δkNk

= di, (3.3)

so that

∑

i∈S

di = 1. (3.4)

In the following it will be assumed that the value ofeither b or d are constant over
all demes. This is to ensure, that all demes, on average, are involved in events
equally often. Since time is measured in terms of events, this assumption assures
that time has the same meaning in all demes. The model is not confined to this
premise. It is only posited to keep the results as simple as possible. This imposes
some limitations on the composite parameterβiNi, that must be kept in mind. (3.1)
and (3.3) will be denoted the birth and the death rate respectively. The one of them
that is allowed to vary among demes will be referred to as the primary parameter
and the one that is equal over all demes is denoted the secondary parameter. The
model where the death rates are even, is denoted the death model, and the model
where the birth rates are equal is denoted the birth model. Note that in these models
the per capita parameter is only even among demes if all deme sizes are equal. In
the formulation of the model deme sizes are allowed to vary. However, for the sake
of simplicity, explanation of results will assume equal deme sizes. The effects of
different sized deme sizes will be considered in a separate section.

3.2.1 Sampling in an Unstructured Setting

In the unstructured situation there is independence of where the birth event and the
death event takes place. Hence, the probability that one lineage is split into two
that stay in deme one is a simple product of the probabilitiesof a death event and a
birth event in deme one:

P (B1,D1) = b1d1. (3.5)
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Analogously the probability that in a Moran event we have a migration from deme
one to deme two is

P (B1,D2) = b1d2, (3.6)

and the probability that we have a migration from deme two to deme one is:

P (B2,D1) = b2d1. (3.7)

Hence, the simultaneous density ofB andD is

D2

D1

b1d2

b1d1

B1

b2d2

b2d1

B2
(3.8)

3.2.2 Sampling in a Structured Setting

In a model with structure the events of birth and death are no longer independent.
The more pronounced the structure, the stronger the dependence. Let deme one be
the sink and deme two thesource. The density of the vector(B,D) in the birth
model and in the death model can be expressed as

D2

D1

b1(1 − s)

b1s

B1

b2p

b2(1 − p)

B2

and
D2

D1

d2(1 − g)

d1h

B1

d2g

d1(1 − h)

B2 (3.9)

respectively. In the birth model thed’s are substituted for terms ofs andp. This
way the birth and death rates can be varied. The values ofs and p determines
the extent to which the sampling of lineages to die are skewedaway from the
unstructured panmictic situation. In the maximally structured situation, there is
only migration from the source to the sink, implying thats is one. In this casep
must equald2/b2 if the double stochasticity is to be retained. In the unstructured
cases equalsd1, andp equalsd2. The limits tog andh in the death model are
determined analogously. To summerised1 ≤ s ≤ 1, d2 ≤ p ≤ d2/b2, b1 ≤ h ≤
b1/d1 and b2 ≤ g ≤ 1. The covariance ofB andD under the birth and the death
model are
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Cov(B,D) = b1b2(p + s − 1) = b1(s − d1) = b2(p − d2) (3.10)

and

Cov(B,D) = d1d2(h + g − 1) = d2(g − b2) = d1(h − b1) (3.11)

respectively. The last two terms in (3.10) and (3.11) are obtained by expressing the
densities (3.9) only in term of one structure parameter.

To get the same degree of source-sinkness in the birth and thedeath model
the value ofb1 under the death model must equal the value ofd2 under the birth
model, andb2 under the death model must equal the value ofd1 under the birth
model. Since we have that under the birth modelb2p + b1(1 − s) = d2 and under
the death model thatd1h + d2(1 − g) = b1 we have thatp + s = h + g. Hence on
the condition that both models describe the same over/underproduction situations
in the demes, (3.10) equals (3.11), and the two models collapse into one. This
means that the density of (B,D) for both models can be expressed as the doubly
stochastic matrix:

D2

D1

b1d2 − Cov(B,D)

b1d1 + Cov(B,D)

B1

b2d2 + Cov(B,D)

b2d1 − Cov(B,D)

B2 (3.12)

In the case of maximal covariance, we have a maximally structured scenario.
Here the covariance has the maximal value ofb1d2 and there is only migration from
the source to the sink. That is, the minimal migration neededto compensate for the
differences in demography between the two demes. In this limit the density of the
vector(B,D) is:

D2

D1

0

b1

B1

d2

b2d1 − b1d2

B2 (3.13)

A deviation from the maximal covariance will result in additional symmetric mi-
gration between the demes. Hence, the migration between thedemes can be sepa-
rated into an unidirectional compensating migration serving to conserve deme sizes
and a symmetric mixing migration serving only to mix the lineages in the demes.
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In the maximally structured situation the probability of a split in the source is
governed solely byd2 in the source, and byb1 in the sink, sinceP(B2|D2) = 1
andP(D1|B1) = 1. In other words, maximal structure corresponds to a situation
where, if possible, an empty space in a deme will always be filled with an individual
born in that same deme. Hence, maximal structure is the situation where we have
as many split events with no migration as the the smallest of the parameters allow.

The diagonal entries in (3.12) represent both the probability of an immigration
event and an emigration event, depending on which deme is considered. Here how-
ever, since these are equivalent descriptions in a two-demesystem, all migration
rates can be expressed in terms of immigration rates. The matrix describing the
probabilities of migration events is:

F =

[
1 − bidj − Cov(B,D) bidj − Cov(B,D)

bjdi − Cov(B,D) 1 − bjdi − Cov(B,D)

]
(3.14)

Note that the probabilities in this matrix are the probabilities of migration of some
lineage in a particular deme, and not the probabilities om migration of some par-
ticular lineage.

This way of describing migration allows us to separate the part of the migration
rate that is needed to conserve deme sizes, and the part that is symmetric, serving
only to mix the lineages between demes. The compensating migration is the unidi-
rectional migration in the maximally structured scenario,where the covariance has
the maximal value. The mixing migration is given by the departure form the max-
imal covariance. Thus the relative size of the two decides towhat extent a deme is
an over or under producer, and to what extent it is a high or lowturnover deme.

3.2.3 The Coalescent in Two Demes

Under the retrospective Coalescent model we must consider the backwards tran-
sition probabilities. Since the matrix (3.12) is double stochastic, the probability
that a particular lineage in a deme is split into two in the forward model, equals
the probability, that backwards in time, a pair of lineages in the deme coalesce into
one.

In the Moran model, for each migration event in the forward model, both a
donor and a receptor deme for the migration is given by where the birth and the
death event is sampled. Hence, owing to the double stochasticity of the density
(3.12), a the probability of a forward migration event from demej to demei equals
the probability of a backwards relocation event from demei to demej. The matrix
describing the probabilities that some lineage in a deme relocate backwards in time
is thus:

H =

[
1 − bjdi − Cov(B,D) bjdi − Cov(B,D)

bidj − Cov(B,D) 1 − bidj − Cov(B,D)

]
(3.15)
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It must again be stressed that these are the probabilities, that some lineage in a
particular deme relocates, and not the probability of the relocation of a particular
lineage. Below the transition probabilities pertaining tothe particular lineages from
the sample are considered.

For two demes and allowing eitherb or d the probability of a coalescence event
between two lineages in demei is:

2

(
αi

2

)
(bidi + Cov(B,D))ϕ

Ni
2 i ∈ {1, 2}, (3.16)

whereαi is the number of lineages from the sample in demei. To explain, this
is the probability, that two lineages in the deme coalesces,times the probability,
of drawing two particular lineages from the deme ,2/NT

2, times the number of
pairs in our sample,

(
αi

2

)
. The correction factorϕ = Ni/(Ni − 1) designates the

probability that it isnot the same lineage that is sampled twice. If the same lineage
is sampled twice, it corresponds to the event where a newborntakes the place of
the mother, in which case all the lineages are still represented in the deme. In other
words, if this is the case, the equivalence classes representing the sample back in
time would not be altered. SincelimN→∞ ϕ = 1, ϕ can of cause be left out if
deme sizes are large. It is included here because large demesare not a prerequisite
in the Moran model.

The probability of a coalescence event of a lineage located in demei to one
located in demej is:

αi(dibj − Cov(B,D))

Ni

(
αj

Nj

)
i, j ∈ {1, 2}. (3.17)

That is, the probability that a lineage relocates from demei to demej, times the
probability the birth event in demej is a reproduction of a lineage from the sample.

The probability of a relocation from demei to demej without affecting any
other lineages from the sample is:

αi(dibj − Cov(B,D))

Ni

(
1 −

αj

Nj

)
i, j ∈ {1, 2}. (3.18)

Time and thus the transition probabilities are scaled withNT /σ2. σ2 is the
variance of the joint distribution ofνi ∈ {νi, . . . , νn} whereνi is the number of
offspring of a particular lineage in one event. In the standard Moran Model with
no structure,σ2 = 2/N , so we scale withN2/2. This is done to make the model
congruent with the standard results for the Coalescent, seesection 1.2. Hence,
(3.16), (3.18) and (3.18) turns into (3.19), (3.21) and (3.21)

(
αi

2

)
(bidi + Cov(B,D))ϕ

ci
2

i ∈ {1, 2} (3.19)
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αiαj(dibj − Cov(B,D))

2cicj
i, j ∈ {1, 2} (3.20)

αi(dibj − Cov(B,D))(cjNT − αj)

2cicj
i, j ∈ {1, 2}, (3.21)

whereci is the fraction of the total population size that the deme constitutes. (3.19)
will be referred to as the in-deme coalescence rate in demei, (3.20) as the cross co-
alescence rate from demei to demej, and (3.21) as the relocation probability from
i to j. The matrix of relocation probabilities, will be referred to as the backwards
migration matrix.

The sequence of events up to a coalescence event is a Markov process since
the transition probabilities are only dependent on the state in which the sample is
presently in. After a coalescence event the number of possible states decreases,
and a new Markov process takes the process ahead. We havel + 3 states, wherel
is the number of lineages left in the sample. The firstl + 1 states, indexed byα1

designating the number of thel lineages present in deme one. Sol − α1 = α2.
There are further, two states,l + 2 and l + 3, that each represent a coalescent in
deme one or deme two respectively. Only the process of decreasing the number of
ancestors is considered. The rows 1 throughl+1 in the transition matrixQ = {qij}
are zero except:

qα1,α1+1 =
α2(d2b1 − Cov(B,D))(c1NT − α1)

2c1c2
(3.22)

qα1,α1−1 =
α1(d1b2 − Cov(B,D))(c2NT − α2)

2c1c2
(3.23)

qα1,l+2 =

(
α1

2

)
(b1d1 + Cov(B,D))ϕ

c1
2

+
α1α2(d1b2 − Cov(B,D))

2c1c2
(3.24)

qα1,l+3 =

(
α2

2

)
(b2d2 + Cov(B,D))ϕ

c2
2

+
α1α2(d2b1 − Cov(B,D))

2c1c2
(3.25)

qα1,α1 = −(qα1,α1+1 + qα1,α1−1 + qα1,l+2 + qα1,l+3). (3.26)

The rowsl+2 andl+3 have all zero entries exceptql+2,l+2 = 1 andql+3,l+3 =
1, since these states are absorbing. Hence we have a matrix:

Q =

[
B C
0 I

]
(3.27)
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where the off diagonal entries ofB matrix are the relocation probabilities, and the
diagonal entries are given by (3.26).C is the matrix of coalescence probabilities,
andI is a 2 × 2 identity matrix. The transition probabilities are all independent
of the time elapsed between coalescence events, so the Markov transition matrix is
a stationary one. In conclusion the probability of a transition from statei to j is
given by

pij = δij + qij
2

N2
T

, (3.28)

whereδij is the Kronecker delta1. LetP = {pij}. Since time is scaled in units of
N2

T /2, passing all deme sizes to infinity produces the continuous Markov process

lim
Ni→∞

i∈S

P [
N2

T
2

t] = eQt, (3.29)

where[
N2

T

2 t] indicates that time is measured in units ofN2
T /2.

In the Moran model per definition only one event can happen in each time unit.
This may be a coalescence event or one relocation event. Hence, passing the deme
sizes to infinity only serves to change the discrete Markov chain into a continuous
process. (In the Wright-Fisher model the diffusion approximation also serves to
make the probability of multiple coalescence or relocationevents negligible.) In
other words the continuous Markov process describing the structured Coalescent,
P, is exact in the Moran model. The only approximation involved is the approxi-
mation to continuity.

The distribution of time to the first event of any kind is exponential with rate
parameter equal to that of the diagonal entries in Q that represents the present
distribution,α, of the lineages among the two demes.

P (T > t | α) = e−(qi,i)t ⇒ P (T < t | α) = 1 − e−(qi,i)t. (3.30)

In other words, the rate parameter of the exponential distribution is the sum of all
the possible transition probabilities given a particular distribution of the lineages:

P (T < t | α) = 1 − exp



−




∑

i∈S

(
αi

2

)
(bidi + Cov(B,D))ϕ

ci
2

+
∑

i∈S

∑

j∈S:j 6=i

αiαj(dibj − Cov(B,D))

2cicj

+
∑

i∈S

∑

j∈S:j 6=i

αi(dibj − Cov(B,D))(cjNT − αj)

2cicj



 t



 .(3.31)

1The Kronecker delta,δij , equals one ifi = j and equals zero otherwise
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The mean of an exponential distribution1 − e−λt is 1/λ, so the expected waiting
time to a transition to a particular state is the inverse of its transition rate.

Since the time to the first event of either coalescence or relocation is exponen-
tially distributed, the probabilities of the different events, when an event finally
occurs, is a simple weighting of probabilities. Formally, if the process is in statei,
the probability that the next transition is a transition to statej is

P(Next transition =i → j) =
qij∑

j=1,j 6=i

qij

. (3.32)

Hence, ifCii→i is the event of two lineages from demei coalescing into one in
demei, Cji→i is the event of one cross coalescence of a lineage in demej and one
in demei coalescing into one in demei, andRi→j is the event of a relocation of a
lineage from demei to j, then the probabilities of the different events are:

P (Cii→i) =

(
αi

2

)
(bidi + Cov(B,D))ϕ

ci
2ξ

(3.33)

P (Cij→j) =
αiαj(dibj − Cov(B,D))

2cicjξ
(3.34)

P (Ri→j) =
αi(dibj − Cov(B,D))(cjNT − αj)

2cicjξ
, (3.35)

where

ξ =
∑

i∈S

(
αi

2

)
(bidi + Cov(B,D))ϕ

ci
2

+
∑

i∈S

∑

j∈S:j 6=i

αiαj(dibj − Cov(B,D))

2cicj

+
∑

i∈S

∑

j∈S:j 6=i

αi(dibj − Cov(B,D))(cjNT − αj)

2cicj
(3.36)

For panmixia and equal deme sizes, that is, if the covarianceis zero and

b1

b2
=

d1

d2
=

c1

c2
= 1 (3.37)

we have a standard Coalescent in one demographicly homogeneous population,
since with this assumption we have (assuming infinitely large demes)

ξ =
∑

i∈S

(
αi

2

)
bidi

ci
2

+
∑

i∈S

∑

j∈S:j 6=i

αiαjdibj

2cicj
=

(
|α|

2

)
, (3.38)
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which is the coalescence rate for|α| sequences in one panmictic population (Kingman
1982a). This is the case because sampling of the death and the birthevent is inde-
pendent and occurs with equal probability in all demes, so that the probability of
cross coalescence is the same as in-deme coalescence. In a model with dependent
sampling of the death and the birth event, ie. a structured model, the scaled reloca-
tion probability has to be infinite for the model to behave panmicticly, as we shall
see in section 3.4

3.2.4 Coalescence Intensity and Demography

The coalescence rates depend on the demographic parametersb, d and theCov(B,D).
The dependence onCov(B,D) is straightforward, and is the same irrespectively
of whether the primary parameter isb or d: The larger theCov(B,D), the larger
the in-deme coalescence rate, the smaller the relocation probability, and thus the
smaller the cross coalescence rate.

The in-deme coalescence rate, however, is in addition dependent on which pa-
rameter that is the primary one. In the unstructured setting, the in-deme coales-
cence rate is lower in the sink and higher in the source ifb is the primary pa-
rameter. If the primary parameter isd, the in-deme coalescence rates are affected
reciprocally. For the maximally structured situation, theprobability of a in-deme
coalescence is governed solely byd in the source and byb in the sink (see (3.13)).

3.2.5 Demography, Relocation and Deme Size

The asymmetry of relocation probabilities in a source-sinkmodel is a result of the
relative sizes of the net over- or under-production in each deme. The net production
is (βi− δi)Ni. In the death model it is,βiNi since the per capita death parameter is
one in both demes. Hence, the relative sizes of productionbi = βiNi/

∑
k∈S βkNk

is a function of bothβ anN . This implies that the migration regime in a source-
sink population is governed both by deme sizes as well as per capita parameters.
This may seem obvious, but it is important to keep in mind in the following.

The relocation probability of a particular lineage from thesample, which is
our concern here, is in addition dependent on the size of the deme that the lineage
resides in before the relocation. Hence, in considering therelocation probabilities
of a particular lineage, it is crucial to distinguish clearly between the demographic
contribution given byb, d andCov(B,D) in (3.15), and the contribution of one
particular deme size. The dependence of both is seen in (3.18). The interplay of
per capita parameters and deme sizes is best described by a few examples:

A small source with a large per capita overproduction and a large sink with
small per capita underproduction, (Recall that theb’s and d’s each sum to one,
which imposes some restrictions onβi, δi andNi) will result in an asymmetric flux
of individuals given by (3.15). The asymmetry in relocationprobabilities, how-
ever, will be even more asymmetric, than would be expected from the source-sink
relationship between the demes. This owes to the dependenceof each relocation
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probability on one particular deme size. For a given backwards out-flux of lineages
a small deme size will give a larger relocation probability.The drift regimes in each
deme is obviously dependent on the deme size. Besides this effect, there is the ef-
fects of the local drift differences resulting from demography. Hence, depending
on whether it is the birth or the death rate that vary between demes, the effect of
different deme sizes may either enhance or, to some extent, cancel out with the
effect of demography. In an unstructured setting, the driftregimes will be the same
between demes if the relation between the deme sizes is equalto the square of the
relation between the two values of the primary parameter.

With a large source with a small per capita overproduction and a small sink with
large per capita underproduction (the opposite of the case above), will still result
in an asymmetric flux of individuals, but this may not be reflected in asymmetry of
the relocation probabilities. This again owes to the dependence of each relocation
probability on one particular deme size. The relocation probabilities may in fact
be symmetric if the asymmetry in deme sizes cancel out with the asymmetry in net
flux of individuals given by (3.15). In an unstructured setting, the relocation prob-
abilities will be symmetric if the relation between the demesizes is the same as
the relation between the two values of the primary parameter. Hence even though
there is a true source-sink functionality between the demes, this will not show in
the backwards migration matrix. Just as explained above, the drift regimes in the
demes may be the same if the effect of deme sizes chancel out with the effect of
demography. This may be possible in the death model. In the birth model, how-
ever, the different deme sizes will accentuate the local drift differences. Hence, we
may have source-sink functionality with large differencesin drift strength between
demes, that does result in asymmetric relocation probabilities.

Unequal deme sizes may result in asymmetric relocation probabilities even
though the net flux of individuals is symmetric. In this case the drift regimes in
each deme are of cause solely governed by the deme sizes.

In conclusion, since relocation probabilities are composite parameters, it is not
possible to distinguish the effects of deme sizes and the effects from the demo-
graphical relation between demes.

Since, the primary subject of this study is the effect of demography an not of
deme sizes, the graphical representations and explanations in the following will as-
sume equal deme sizes. This is to present the clearest possible picture of the effects
of local demographic differences. Recall that this impliesthat the per capita death
rate is equal among demes in the death model, and that the per capita birth rate
is equal among demes in the birth model. Hence, in this situation the representa-
tion of demography in the relocation probabilities is not obscured by the effects of
different deme sizes.
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3.3 Coalescence Time for Two Sequences

In this section it will be investigated how the expected coalescence time of two
sequences, for different modes of sampling, is affected by local demographic dif-
ferences. Exact results for expected coalescence times in the structured Coalescent
can be obtained recursively. Following Notohara (1990) andWakeley (1998), stat-
ing the process as a Markov chain withX states and infinitesimal generatorQ, we
have, as described in the previous chapter:

E[Ti] =
1

qi∗
+

X∑

j=1,j 6=i

qij

qi∗
E[Tj ]. (3.39)

In this model all demes are potentially different, with respect to both relocation
and coalescence probability. Hence, we can not derive a general exact result for
an arbitrary number of demes. However, with this approach wecan derive exact
results for sets of demes with specified parameter values.

The amount of calculations increase rapidly with the numberof demes and
sampled sequences, and the results quickly become to complex for any intuitive
theoretical value. Below we consider the exact result for two lineages and two
demes. Even for this simple scenario, the analytical results are two complex for
any explicatory value without the aid of graphical representation.

λ
(s)
i =

(dibi + Cov(B,D))ϕ

ci
2

(3.40)

λ
(d)
i =

(dibj − Cov(B,D))

2cicj
(3.41)

R
(s)
ij =

(dibj − Cov(B,D))NT

2ci
(3.42)

R
(d)
ij =

(dibj − Cov(B,D))(cjNT − 1)

2cicj
. (3.43)

The superscripts(s) and(d) signifies same and different, and states whether the

two lineages are in the same deme or in different demes. ThusR
(s)
ij is the prob-

ability that a lineage ini was resident inj before the previous event, when both
lineages are in demei. R

(d)
ij is the same just for the situation where one lineage

is in demei and one is in demej. They differ becauseR(s)
ij does not take a pos-

sible cross coalescence into account, whereasR
(d)
ij does. Analogouslyλ(s)

i is the

in-deme coalescence probability of two lineages in demei, andλ
(d)
i is the cross

coalescence probability of one lineage in demei to one in demej. For large pop-
ulation sizes we may assume thatR

(s)
ij = R

(d)
ij . This may ease calculation of more

complicated results.
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With the notation (2,0) corresponding to sampling two sequences in deme one,
the sink, and none in deme two, the source, we have for two sequences:

E[T (2, 0)] =
1

2R
(s)
12 + λ

(s)
1

+
2R

(s)
12

2R
(s)
12 + λ

(s)
1

E[T (1, 1)] (3.44)
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+
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(s)
21
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(s)
21 + λ
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E[T (1, 1)] (3.45)

E[T (1, 1)] =
1

R
(d)
12 + R

(d)
21 + λ

(d)
1 + λ

(d)
2

+
R

(d)
12

R
(d)
12 + R

(d)
21 + λ

(d)
1 + λ

(d)
2

E[T (0, 2)]

+
R

(d)
21

R
(d)
12 + R

(d)
21 + λ

(d)
1 + λ

(d)
2
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Solving this system of linear equations we get:
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The striped area in figure 3.1 shows the range of parameter values allowed by
the assumptions in the model. Hence, this range of parametervalues compose the
domain on which the equations (3.47), (3.48) and (3.49) are defined. We have as
initial condition, in terms of the forward mode, that some minimum amount of one-
way relocation from sink to source is needed to compensate for the differences in
growth rates among demes. The larger the differences in the values of the primary
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Figure 3.1: The striped area represents the area where the functions in figures 3.2 and 3.3
are defined. This domain is dictated by the assumptions in themodel, that some minimum
amount of relocation is needed to compensate for the demographical differences. Hence,
given the values ofb’s andd’s theCov(B, D) can only take some maximal value. For a
specified set ofb andd values these areas also represents the relative sizes of thecompen-
sating and mixing part of the relocation probability from sink to source. See the text for an
explanation.

parameter among the demes, the larger this compensating relocation has to be.
Hence, the values of the primary parameter impose a limit to the maximum level
of structuring (maximal covariance), if deme sizes are to beconserved.

As explained in section 3.2.2, the probability of a forward migration event to
the sink of any lineage in the source, can be divided into a probability correspond-
ing to the minimal unidirectional migration needed to conserve deme sizes, and
a probability corresponding to the additional symmetric migration serving only to
mix lineages between two demes. This is also true for the backwards process, and
assuming that deme sizes are equal, the relation between thecompensating and the
mixing migration, is also directly reflected in the relocation probabilities pertaining
to the lineages from our sample.

Figure 3.1 shows the relation between these two types of relocation. Consider
some value of the primary parameter on the x-axis. For an unstructured scenario,
the fraction of the parameter space outside the domain (the white area) corresponds
to the fraction of the relocation from sink to source that is compensating, whereas
the fraction of the space inside the striped domain corresponds to the fraction of the
relocation that is symmetric and only serves to mix lineagesamong demes. Hence,
the symmetric mixing fraction of relocation also equals themigration from sink to
source.

In a structured scenario with a covariance of ’c’ (see figure 3.1) the fraction of
the parameter space between ’c’ and the maximal covariance,relative to the frac-
tion outside the domain, corresponds to the fraction of migration that is symmetric
and mixing. Hence the larger the covariance the smaller the symmetric mixing
fraction of migration.

Equations (3.47), (3.48) and (3.49) are plotted againstCov(B,D) andb in fig-
ure 3.2 and againstCov(B,D) andd in figure 3.3 The domain shown in figure 3.1
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constitutes the base plane in the figures 3.2 and 3.3. The scenarios range from
symmetry in net productivity to the case where the source hasa net production 2.3
times that of the sink. This is well within the limits of biological realism. In each
figure, the graphs for each mode of sampling are much alike. Only, there is a spike
in the corner, when sampling evenly among demes. There should be a thin spike in
the graphs for sink sampling as well, but the resolution of the graph fails to show
it. In both figures the graphs fall off with larger covariance. Note that the surfaces
spans only the domain given in figure 3.1, and not the entire square spanned by the
two axises.

3.3.1 Effect of Relocation Waiting Time

This effect is described in section 2.2, and is responsible for the spike in the corner
of the graphs for even sampling in the figures 3.2 and 3.3. The expected coales-
cence time may be greatly prolonged if the lineages are located in separate demes,
and the relocation probabilities are low. In this case also cross coalescences will be
rare. Hence, for very low relocation probabilities, lineages in separate demes will
effectively be precluded from coalescing. The effect is obviously only in play for
relocation probabilities so low, that it can not be assumed that the amount of time
the lineages spend in the two demes is stationary distributed. This assumption is
treated in section 3.4. Hence, the effect is only seen in the corner of the parameter
space corresponding to minimal demographic difference between demes and max-
imal structure. That is, where relocation probabilities are very low. The effect is
manifested in the results forE(1, 1) (even sampling) andE(2, 0) (sampling in the
sink), by the increase in expected coalescence time.

The effect is most pronounced for even sampling, since, in any case, there will
be at least some relocation waiting time. In the case of sink sampling the effect
is less strong (there is actually a thin spike in the corner, although the figures fail
to show it), since the possibility of a coalescence event does not rely entirely on a
relocation event. The effect that is seen owes to cases wherea lineage relocates be-
fore the two lineages coalesce, so that the coalescing of thetwo becomes dependent
on another relocation event. This will of cause happen with larger probability the
larger the relocation probability is. However, the resulting waiting time after the
first relocation event decreases with larger relocation probability. Hence, as seen
in the graph, we expect the mean of the coalescence time to grow as the relocation
probability falls. For this mode of sampling, the expected coalescence time tends
to infinity as the relocation probability tends to zero, but for a relocation probability
equal to zero, the expected coalescence time is not infinite.Rather, for this value
the expected coalescence time is equal tob, since in this situation all coalescences
will happen in the sink without interference of migration.
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Figure 3.2: Expected coalescence time for two sequences in the death model. The two
deme sizes are equalN = 100. The modes of sampling are from top to bottom: Two from
the sink, one from each deme, two from the source.
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Figure 3.3: Expected coalescence time for two sequences in the birth model. The two
deme sizes are equalN = 100. The modes of sampling are from top to bottom: Two from
the sink, one from each deme, two from the source.
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3.3.2 Effect of Asymmetric Relocation Probabilities

The asymmetry of the relocation probability results in an aggregation effect as de-
scribed in section 2.2. The lineages will have a tendency to be located together
in the source a larger fraction of the time, than they would with symmetric relo-
cation probabilities. When there is an elevated probability of finding the lineages
together in some smaller subsection of the population they obviously have a higher
probability of finding a common ancestor each generation.

The covariance works to accentuate this effect. With a covariance equal to
zero we have a unstructured scenario, where the probabilityof finding a lineage
in the source is not much larger relative to finding it in the sink. With a maximal
covariance, which means that only the relocation probability from sink to source
is positive, the lineages will aggregate in the source. Thisis the why the expected
coalescence time falls of towards maximal covariance. The magnitude of this effect
is in part determined by the difference in the primary parameter values between the
demes. The larger the difference, the more strongly asymmetric the relocation
probabilities are, and the smaller the covariance has to be to even them out. In
other words, the stronger the source-sink functionality, the more symmetric mixing
migration is needed to counteract the effect of aggregation.

3.3.3 Effect of Local Demography Differences

This effect is the one responsible for the differences between the graphs in fig-
ure 3.2 and those in figure 3.3. A comparison of the graphs in figure 3.2 and 3.3
is shown in figure 3.4. The effect is a result of different in-deme coalescence rate
between the two demes. With varying birth rates among demes,the in-deme coa-
lescence rate in the source is larger than in the sink (sinceb is larger in the source),
whereas with with varying death rates it is the other way around (sinced is smaller
in the source). The contour lines in figure 3.4 depict the differences in migration
scenario for the same mean coalescence times in each model. The difference in
the expected coalescence times for each parameter set is a consequence of differ-
ent drift regimes through the history of the sample. In otherwords, the difference
depends on how much of the time the lineages spend under whichdrift regimes.

For maximal structure (maximal covariance), the coalescence rate is effectively
equal to the in-deme coalescence rate in the source if the relocation probability is
just moderately strong. This is because only the relocationprobability from sink
to source is positive and at most two relocation events will occur. Recall that in
the maximally structured situation the in-deme coalescence rate in the source is
governed byd. The expected coalescence time for even sampling and sink sam-
pling are affected by relocation waiting time for low relocation probabilities, and
converges to0.52/d (the inverse in-deme coalescence rate in the source), as the
distribution of lineages among demes approaches stationarity. In the maximally
structured situation stationarity means that the lineagesspend effectively all their
time in the source. For two sequences sampled in the source, the expected coales-
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Figure 3.4: Expected coalescence times for two sequences inthe death and the birth model.
The modes of sampling are from top to bottom: Two from the sink, one from each deme,
two from the source. The contour lines shows which migrationscenarios that give the same
mean coalescence time in the two models.N = 100.
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cence time is of cause0.52/d for the entire range of the primary parameter, since
in this case there is obviously no relocation events. In conclusion, the expected co-
alescence time for the maximally structured situation of cause varies as a function
of d in the birth model and is constant at 0,5 for the entire range in the death model.

For an unstructured setting (covariance zero), the in-demecoalescence rates for
the two models become more different as the difference in theprimary parameter
increases. This is because the relocation probabilities become more asymmetric,
so that the lineages are more often found in the source, and less often in the sink.
Hence, the total coalescence rate is more affected by the in-deme coalescence rate
in the source than that in the sink. In the death model, the in-deme coalescence rate
is higher in the source and lower in the sink. This means that as the difference in the
values ofb among the demes gets larger, the expected coalescence time becomes
smaller. In the birth model the in-deme coalescence rates are affected reciprocally.
Hence, in this case expected coalescence time gets larger, the larger the differences
in the values ofd.

Figure 3.5 shows the difference in the expected coalescencetime between the
two models for the same migration scenarios. The differencefor each mode of
sampling is, not surprisingly, independent of relocation waiting time. For some
covariance, the difference is a function of the difference in the value of the primary
parameter between the two demes. The dependence on covariance for some set
of birth and death rates, however, is not unambiguous. For small covariances the
mixing migration is strong, resulting in a more uniform distribution of the lineages
over the demes. Hence, the different drift regimes in the source and the sink, will
chancel out to some extent. As the covariance grows the difference in figure 3.5
gets larger. This is due to the fact that as the population becomes more structured,
the relocation probability corresponding to symmetric mixing migration becomes
smaller. Hence, as the conserving one-way migration becomes more dominant, the
lineages will spend more time in the source so that the drift regime in the source
will dominate over the drift regime in the sink. In other words, the antagonistic
effect of the drift regime in the sink will decrease. In conclusion, as the covariance
gets larger, the expected coalescence time becomes more dependent on the drift
regime in the source.

For large covariances the difference between the models falls of. This owes
to the fact that, as the covariance approaches its maximal value, only the drift
regime in the sourceor the sink is dependent on migration, depending on which
parameter is the primary one (see (3.13)). This means that for maximal structure,
the drift regime in the source is only affected by the primaryparameter in the birth
model, and the drift regime in the sink is only affected by theprimary parameter in
the death model. Hence, for some value of the primary parameter, the difference
between the models, will decrease towards maximal covariance.
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Figure 3.5: The deviation of the expected coalescence time for two sequences in the birth
model from that in the death model. The modes of sampling are from top to bottom: Two
from the sink, one from each deme, two from the source.N = 100
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The Model-Specific Effects of Demography

The effect that local demography differences impose on expected coalescence time
under the birth or a death model can be investigated by comparing the models
to a reference with no demography differences between demes. Such a model is
produced from the present model by settingboth theb’s and thed’s in the in-deme
coalescence rate terms to 0.5.

(
αi

2

)
(0.5 0.5 + Cov(B,D))ϕ

ci
2

i ∈ {1, 2}. (3.50)

The emerging model can not meaningfully be explained from from the elements of
the transition probabilities, and is only to be thought of asa reference model with
a set of transition probabilities equal to what would be found in a setting with the
same relocation probabilities but with no demography variation.

Figure 3.6 depicts the deviation in expected coalescence time in the death
model, from the result obtained from the reference model neglecting the local drift
differences, and Figure 3.7 shows this deviation for the birth model. The deviation
due to demography differences are stronger in the birth model. However, compared
to the reference model the deviations of the coalescence rates in the death and the
birth model are equal. The difference between figure 3.6 and figure 3.7 owes to
the fact that these plot the inverse coalescence rates, i.e.the expected coalescence
times.

The drift differences in each will together with the deme sizes, comprise the
effective deme sizes that may be inferred from a data set. Thedeme sizes that
would be obtained from a population described by the model presented here, would
thus be the deme sizes resulting in the same strength of driftin each deme, as
described above.

Effective Population Size Description

For deme sizes of 100, as shown in figure 3.2 and 3.3, the expected coalescence
time shows only a slight dependence on the mode of sampling inmost of the pa-
rameter space. In the corner of the parameter space where therelocation rates
are so low that initial sampling may potentially play a role,the difference in in-
deme coalescence rate is very small, as seen in figure 3.5. This implies that for
combinations of parameter values that produce a local drifteffect due to varying
demography the process can be approximated by the strong migration limit (see
section 2.4.4) as long as the deme sizes are just moderately large (N > 100).

As will be considered in section 3.4.2, stationarity of the distribution of lin-
eages among demes, implies that the Coalescent of the sampleis a standard King-
man one, which again implies that the effect of a source-sinkfunctionality on the
expected coalescence time is an effect on effective population size only. Hence,
the population behaves like an unstructured population with different effective total
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Figure 3.6: The deviation of the expected coalescence time of two sequences in a model
with no local demography differences, from that in the deathmodel. The modes of sam-
pling are from top to bottom: One from each deme, two from the sink, two from the source.
N = 100. The expected coalescence time for no demography differences were obtained
from equation (3.47), (3.48) and (3.49), setting the in-deme coalescence rates to (3.50).
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Figure 3.7: The deviation of the expected coalescence time of two sequences in a model
with no local demography differences, from that in the birthmodel. The modes of sampling
are from top to bottom: One from each deme, two from the sink, two from the source.
N = 100. The expected coalescence time for no demography differences were obtained
from equation (3.47), (3.48) and (3.49), setting the in-deme coalescence rates to (3.50).
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population size for parameter values that give an effect of asource-sink dynamic,
as long as the population size is just moderately large.

The source-sink effective population is described in detail in section 3.4. For
deme sizes so small that the process can not be approximated by the strong migra-
tion limit, the demographic effects may have an effect on tree structure. This is
considered in the next section.

3.3.4 Effects on Tree Structure

Before we go on to describe the source-sink effective population size that was
found to be a sufficient description for just moderately large deme sizes, the effects
on tree structure for small demes is investigated.

For a sample of more than two lineages, the topology and relative branch
lengths of the resulting trees becomes interesting if thesedeviate from what would
be expected for asymmetric relocation probabilities but nodifference in demogra-
phy among demes. This would be the case if demography changesthe effective
sizes of demes. Hence, the effect of local demography differences would not only
be an effect on total effective population size, but also an effect on the effective
deme sizes. That is, not only an effect onNe but also an effect onc = {c1 . . . cD}.

Deviations from a situation without drift difference will be manifested in the
tree structure if the lineages are subject to different strengths of drift at different
periods of time. This would be the case if relocation is unidirectional or highly
asymmetric, and the relocation probabilities are of the same magnitude of the co-
alescence rates. In this case, sampling from the sink will produce a tree where the
drift regime regime near the present differs from that near the root of the tree. If
the relocation probability from sink to source is much larger than the coalescence
rate in the sink, the sampled lineages will spend all their time in the source. Hence,
the drift regime will not differ over the tree.

If the strength of drift near present time, where the lineages are resident in the
sink, is different from the strength of drift further back intime where the lineages
reside in the source, due to the difference in in-deme coalescence rate in the demes,
the tree structures are expected to differ between the deathand the birth model. In
the death model coalescence rate is expected to be slower near present time, and
faster near the common ancestor. In the birth model it shouldbe the other way
around. In the maximally structured situation, the in-demecoalescence rate and
the relocation probability in the sink are equal fork lineages if sink deme size is
given by

N1 =
(k − 1)b1

b2d1 − b1d2
, (3.51)

where 1 is the sink and 2 is the source. The larger the difference in the the value
of the primary variable, the smaller the deme size have to be.Assuming equal
deme sizes, these examples of parameter sets make the rates in (??) equal when the
number of lineages in the sink is seven.
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Primary Deme size in Deme size in
parameter death Model birth Model

0.7 0.3 9 15
0.65 0.35 14 20
0.6 0.4 24 30
0.55 0.45 54 60

This implies that deviations in tree structure due to demography are to be looked
for in this neighbourhood of parameter values.

The effect of source-sink functionalities on the ancestralrelationship of a sam-
ple is particularly interesting for small populations, since it is often in the cases
where population sizes are small, that the questions concerning the independent
survival of a demes, are asked.

Simulation

I have written a simulation programme in C that generates coalescence times and
tree statistics under a Moran model with specified parameters. It simulates a wide
variety of scenarios. Adjustable parameters are per capitabirth and death parame-
ters of each deme, covariance of birth an death events, relative sizes of demes, total
population size and mode of sampling. In outline the simulation algorithm is:

1. The time to the next event is sampled from an exponential distribution, with
parameter equal to the sum of all relocation and coalescenceprobabilities.

2. It is determined whether the next event it is a coalescenceevent or a reloca-
tion event by a simple weighting of exponential intensities.

3. It is determined which deme/demes are affected.

4. In the case of a relocation event, it is determined whetherthe relocation
is actually a cross coalescence event, and if it is, which twolineages that
coalesce.

5. In the case of a in-deme coalescence event, is is determined which two lin-
eages that coalesce.

6. 1 through 5 is repeated until only one lineage remains.

7. Branch lengths and tree statistics are calculated.

8. 1 through 7 are repeated 1000000 times.

9. Means and variances of of branch lengths and tree statistics are returned to
output.
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The means are obtained as the arithmetic mean of the results of each of the 1000000
runs, since each result occurs according to the density under the simulated model.

The simulations were done to investigate the effects of a source-sink function-
ality on tree structure. The maximally structured death andbirth model are studied
in the cases where they produce the same source-sink functionality. That is, when
the values ofb1 andb2 in the death model equals the values ofd2 andd1 in the
birth model. Hence, the relocation regimes are the same, whereas the drift regimes
differ between the models. For obvious reasons, it is not possible to compare the
models in a situation where the drift regimes are the same forboth models. This
would result in symmetric relocation probabilities, and thus obliterate the source-
sink relation under study.

In addition, results are simulated for the same unidirectional migration regime,
but artificially neglecting the demography specific differences in in-deme coales-
cence rate (see section 3.50). This is intended as a reference to separate the effects
of pure asymmetric migration from the effects of demographyspecific drift differ-
ences. To get the clearest picture possible, deme sizes are set to be even.

The sample size is eight. For each set of values of the primaryparameters, a
deme size is chosen, so that the coalescence rate approximately equals the reloca-
tion probability in the sink, when seven lineages remain in the sink. Each of the
considered cases simulated for three modes of sampling: Sampling entirely from
the sink, from the source, or evenly from both sink and source. Apart from the
expected coalescence times, the following tree statisticsare obtained:

T: Tree Depth, the time to the most recent common ancestor.
A: Total branch length, the sum of the length of all the branches.
E: External branch length, the sum of the terminal branches.
I: Total internal branch length, the sum of the non-terminalbranches.
L: Last branch level, the coalescence time of the two last lineages.

As described in the previous chapter the values of these statistics under the stan-
dard Kingman Coalescent, together with the values forn = 8 are:

E(T) = 2(1 − 1/n) =1.75

E(A) = 2
∑n−1

i=1 1/i =5.186

E(E) =2 =2

E(I) = E(A − E) =3.186

E(L) = 1 =1

E(E)/E(A) = 0.387

E(E)/E(T) = 1.143,

(Kingman 1982a),
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Simulation Results

The results are summarised in table 3.1 and 3.2. The results in table 3.1 are for
primary parameters 0.7 and 0.3, and those in table 3.2 are for0.6 and 0.4.

Recall that in the maximally structured setting, the in-deme coalescence rate
in the sink is dependent on the birth rate only, and that the coalescence rate in the
source is dependent on the death rate only, (see (3.13) for reference). Hence, in the
death model, the drift regime will be weaker in the sink corresponding to a larger
deme size, whereas the drift regime in the source will be unaffected. In the birth
model the drift regime will be weaker in the source and unaffected in the sink.

The deviations from the reference case for per capita parameters 1.2 and 0.8
are rather small. Hence, the values of the per capita parameters must differ at least
as much as 1.4 and 0.6 if demographic differences between thedemes is to have a
considerable influence on tree structure.

Sampling from the source gives trivial results since such a sample will be un-
affected by migration. Hence a standard Kingman Coalescentresults. Interest
focuses on the sink sample that is subject to different driftregimes back through
time. The expected coalescence times in the death and the birth model reflects the
history of changing drift regimes. In the death model, the first branch levels are
longer and the last are shorter, as expected. The opposite effect is seen for the birth
model. The relation between initial coalescence rate and relocation probability are
not the same for the death and the birth model. Recall that thedeme sizes that
makes the coalescence rate and the relocation probability equal are not the same
for both models (see section 3.3.4). For the same relocationprobabilities, the initial
coalescence rate in the sink is higher in the birth model thanin the death model. In
the reference case the relation between the rates equals that in the birth model.

Comparing the tree statistics from the death and the birth model present the
following picture: The total tree depth is much larger in thebirth model. This
is because the last coalescences with the longest waiting times, take place in the
source, where the drift regime is weakest in the birth model.The total branch
length is only slightly larger in the birth model. This implies that the trees in the
death model must have longer first branch levels to compensate for the longer last
branch levels in the death model.

It might be expected that longer first branch levels would result in longer ex-
ternal branch length. However, both the external branch lengths and the ratios
external/total branch length, show only a slight difference between the models.
The ratio external branch length/total tree depth, however, is much larger in the
death model. This may result from different topologies occurring with different
probabilities in the two models:

In the birth model the coalescence rate in the sink relative to the relocation
probability is higher than in the death model (see the table in section 3.3.4). Hence,
it is more probable that lineages will coalesce before relocation than in the death
model. If a lineage do relocate before it is involved in a coalescence, it is more
probable in the birth model that only a few lineages will joinit later, since most of
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the lineages in the sample will have coalesced in the sink. Hence, such a lineage
will have a larger probability of coalescing as one of the last in the sample, that is,
representing an external branch in the entire length of the tree.

In conclusion, the birth model may have the same relative fraction of external
branch length as the death model, but the external branches are distributed differ-
ently in the trees. In the death model, it is more probable that the first branch level
are long but less probable that the external branches extendfar back in the tree.
In the birth model, it is less probable that the first branch level are long but more
probable that the external branches extend far back in the tree.

The results for sink sampling and even sampling are much alike differing only
in the first branch levels. Here the expected coalescence time is slightly longer for
even sampling due to an effect of coalescence preclusion.

3.4 Strong Migration Approximation

As shown in section 3.3.3, the effects of a source-sink functionality between demes,
can be described as an effect on effective population size only in most of the pa-
rameter space, as long as the deme sizes are just moderately large. This is because
the relocation probabilities are so large relative to the total coalescence rate, that
the distribution of lineages among the demes is effectivelystationary. Refer to
section 2.4.4 for a description of the strong migration limit.

For the approximation to be justified relocation probabilities must be so much
larger than the total coalescence rate, that a stationary distribution of lineages
among demes between coalescence events can be assumed. Hence, the crucial
relation isRi∗/λk, which must be large for alli. Ri∗ is the scaled probability of
relocating from demei, andλk is the scaled coalescence rate fork remaining lin-
eages, calculated under the assumption of strong migration. The reliability of the
assumption will be considered separately.

Recall that the ancestry in populations in the strong migration limit is described
by a standard Kingman Coalescent with a migration effectivepopulation size. This
implies that the ancestral relationship of sequences sampled from a large source-
sink population is described simply by a scaling of the standard Kingman Coales-
cent. In this section, results for this new source-sink effective population size,Ne,
will be presented.

3.4.1 The Source-sink Effective Population Size

Since a standard Kingman Coalescent is assumed, so that the relative lengths of
branch levels are known, we only need to consider the resultsfor two sequences.
The stationary distribution is binomial for two sequences and gives the probability
that l of the two lineages are located in deme one

p(l) =

(
2

l

)
πl

1(1 − π1)
2−l, (3.52)
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Reference Case:

Sampling Sink Source Even
E(8) 0.0286± 0.0333 0.0247± 0.0278 0.0414± 0.0441
E(7) 0.0441± 0.0441 0.0330± 0.0330 0.0534± 0.0534
E(6) 0.0686± 0.0704 0.0461± 0.0479 0.0716± 0.0729
E(5) 0.1065± 0.1065 0.0694± 0.0694 0.1005± 0.1005
E(4) 0.1673± 0.1681 0.1156± 0.1161 0.1529± 0.1540
E(3) 0.2883± 0.2883 0.2313± 0.2313 0.2698± 0.2698
E(2) 0.7276± 0.7277 0.6948± 0.6950 0.7149± 0.7150
E(T) 1.4311 1.2153 1.4048
E(A) 4.4718 3.6001 4.4897
E(E) 1.8525 1.3879 2.0018
E(I) 2.6192 2.2121 2.4878
E(L) 0.7276 0.6948 0.7149
E(E)/E(A) 0.4142 0.3855 0.4458
E(E)/E(T) 1.2944 1.1420 1.4249

Death Model:

Sampling Sink Source Even
E(8) 0.0373± 0.0394 0.0198± 0.0262 0.0402± 0.0437
E(7) 0.0535± 0.0535 0.0264± 0.0264 0.0507± 0.0507
E(6) 0.0754± 0.0770 0.0370± 0.0404 0.0663± 0.0687
E(5) 0.1051± 0.1051 0.0555± 0.0555 0.0912± 0.0912
E(4) 0.1516± 0.1522 0.0926± 0.0936 0.1355± 0.1363
E(3) 0.2479± 0.2479 0.1848± 0.1848 0.2332± 0.2332
E(2) 0.5972± 0.5972 0.5551± 0.5553 0.5873± 0.5874
E(T) 1.2683 0.9716 1.2048
E(A) 4.1968 2.8798 3.9486
E(E) 1.9271 1.1110 1.8829
E(I) 2.2697 1.7688 2.0657
E(L) 0.5972 0.5551 0.5873
E(E)/E(A) 0.4591 0.3857 0.4768
E(E)/E(T) 1.5194 1.1434 1.5628

Birth Model

Sampling Sink Source Even
E(8) 0.0230± 0.0292 0.0330± 0.0363 0.0429± 0.0465
E(7) 0.0369± 0.0369 0.0441± 0.0441 0.0584± 0.0584
E(6) 0.0624± 0.0647 0.0616± 0.0634 0.0813± 0.0844
E(5) 0.1081± 0.1081 0.0926± 0.0926 0.1178± 0.1178
E(4) 0.1889± 0.1895 0.1543± 0.1547 0.1835± 0.1842
E(3) 0.3525± 0.3525 0.3082± 0.3082 0.3343± 0.3343
E(2) 0.9500± 0.9501 0.9257± 0.9258 0.9370± 0.9371
E(T) 1.7220 1.6197 1.7555
E(A) 5.0714 4.8000 5.4414
E(E) 1.8935 1.8521 2.2640
E(I) 3.1779 2.9478 3.1774
E(L) 0.9500 0.9257 0.9370
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Reference Case:

Sampling Sink Source Even
E(8) 0.0254± 0.0316 0.0206± 0.0242 0.0397± 0.0429
E(7) 0.0408± 0.0408 0.0275± 0.0275 0.0496± 0.0496
E(6) 0.0640± 0.0659 0.0385± 0.0402 0.0646± 0.0667
E(5) 0.0965± 0.0965 0.0579± 0.0579 0.0879± 0.0879
E(4) 0.1457± 0.1467 0.0965± 0.0970 0.1304± 0.1315
E(3) 0.2416± 0.2416 0.1929± 0.1929 0.2258± 0.2258
E(2) 0.6054± 0.6056 0.5792± 0.5792 0.5957± 0.5958
E(T) 1.2197 1.0134 1.1939
E(A) 3.8754 3.0029 3.8836
E(E) 1.6471 1.1571 1.7824
E(I) 2.2283 1.8457 2.1012
E(L) 0.6054 0.5792 0.5957
E(E)/E(A) 0.4250 0.3853 0.4589
E(E)/E(T) 1.3503 1.1417 1.4928

Death Model

Sampling Sink Source Even
E(8) 0.0284± 0.0312 0.0185± 0.0225 0.0388± 0.0424
E(7) 0.0442± 0.0442 0.0247± 0.0247 0.0480± 0.0480
E(6) 0.0659± 0.0671 0.0347± 0.0374 0.0616± 0.0634
E(5) 0.0948± 0.0948 0.0520± 0.0520 0.0835± 0.0835
E(4) 0.1376± 0.1384 0.0868± 0.0875 0.1226± 0.1236
E(3) 0.2240± 0.2240 0.1737± 0.1737 0.2097± 0.2097
E(2) 0.5500± 0.5501 0.5209± 0.5211 0.5414± 0.5415
E(T) 1.1452 0.9116 1.1058
E(A) 3.7302 2.7012 3.6372
E(E) 1.6553 1.0418 1.7168
E(I) 2.0748 1.6593 1.9203
E(L) 0.5500 0.5209 0.5414
E(E)/E(A) 0.4437 0.3857 0.4720
E(E)/E(T) 1.4454 1.1428 1.5524

Birth Model

Sampling Sink Source Even
E(8) 0.0228± 0.0261 0.0232± 0.0259 0.0406± 0.0430
E(7) 0.0377± 0.0377 0.0309± 0.0309 0.0519± 0.0519
E(6) 0.0622± 0.0640 0.0434± 0.0448 0.0682± 0.0698
E(5) 0.0987± 0.0987 0.0650± 0.0650 0.0939± 0.0939
E(4) 0.1546± 0.1554 0.1086± 0.1093 0.1400± 0.1408
E(3) 0.2636± 0.2636 0.2166± 0.2166 0.2462± 0.2462
E(2) 0.6755± 0.6756 0.6498± 0.6499 0.6651± 0.6653
E(T) 1.3153 1.1378 1.3063
E(A) 4.0746 3.3727 4.1977
E(E) 1.6565 1.3012 1.8729
E(I) 2.4181 2.0715 2.3247
E(L) 0.6755 0.6498 0.6651
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whereπi is the probability of finding one lineage in demei, or the fraction of the
time, that one lineage spends in demei. The vectorπ can be can be obtained as the
left eigen vector with corresponding eigen value one, of thebackwards migration
matrixR.

R =

[
1 − r12 r12

r21 1 − r21

]
, (3.53)

and is given by

πj =
rij

rij + rji
j 6= i i, j ∈ {1, 2}, (3.54)

where

rij =
(dibj − Cov(B,D))(cjNT − 1)

2cicj
. (3.55)

pi(l) can be interpreted both as the probability of findingl lineages in demei,
and the expected fraction of the time thatl lineages reside in demei. This means
that the rate of coalescence for the two sequences,λ2, can then be calculated as:

λ2 = p(2) ×
b2d2 + Cov(B,D)

c2
2

+ p(0) ×
b1d1 + Cov(B,D)

c2
1

+ p(1) ×

(
b1d2 − Cov(B,D)

2c1c2
+

b2d1 − Cov(B,D)

2c1c2

)
. (3.56)

The source-sink effective population size is thus given by:

Ne =
NT

σ2λ2
. (3.57)

In terms of the Wright-Fisher model for which effective population size is defined
σ2 = 1 and in the Moran modelσ2 = 2/NT . This straightforward conversion
is possible because the two models are exchangeable in the sense described in
section 1.2. For reference, recall thatNe = NT /σ2 in a panmictic population with
isotropic strong migration and uniform drift regimes in alldemes.

In figure 3.8Ne, in units ofN2/2, is plotted as a function ofCov(B,D) and
eitherb or d as primary parameter. Note that it is effectively identicalto the graphs
in figure 3.4 except for small difference in the values of the primary parameter and
large covariance. Figure 3.9 shows the difference inNe, in units ofN2/2, of both
the death and the birth model to a reference model with no local differences in
demography. Note that the effect of asymmetric relocation probabilities that tend
to aggregate lineages in one deme thus lowering the expectedcoalescence time is
included in the reference model. Hence, figure 3.9 shows onlythe impact, of local
demographic differences in a source-sink population, on the effective population
size. As explained in section 3.3.3, the deviation due to demography differences
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Figure 3.8: The expected coalescence time,Ne, for two sequences is plotted as a function
of covariance and the largest value of the primary parameter, for both the death and the
birth model.

are stronger in the birth model. However, the deviations in coalescence rates in
the death and the birth model are equal. The difference between figure 3.6 and
figure 3.7 owes to the fact that these plot the inverse coalescence rates, i.e. the
expected coalescence times.

Since we have a standard Kingman Coalescent in the strong migration limit,
the relative lengths of expected coalescence times are given by 1/

(
k
2

)
, Hence,

knowing the coalescence rate for two sequences,λ2, the expected coalescence time
of k is simply obtained as

E[Tk→k−1] = 1

/
λ2

(
k

2

)
. (3.58)

3.4.2 Robustness of the Strong Migration Approximation

For the strong migration approximation to hold the relationRi∗/λk must be large
for all i. Otherwise lineages may be “trapped” in some demes, thus preventing the
very large number of relocation events needed, if the assumption of stationarity of
the distribution of lineages among demes, is to be valid. There is a special case,
however, where the spatial distribution is stationary because the lineages spend all
their time inone deme, as in the case of nearly maximal structuring. In this case
the approximation may be valid even though the probability of relocation from the
source to the sink is nearly zero, because such an event wouldimmediately result
in a relocation back into the source. Hence, the lineages arenot “trapped” in the
sink.

In figure 3.10 and 3.11 the effect of assuming a stationary distribution of lin-
eages is shown. The results generated under the stationary distribution under the
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Figure 3.9: The difference inNe induced by differences in demography among demes.
The graphs show the deviation ofNe in a model with no local demography differences,
from that in the death model (top) and the birth model (bottom). N = 100
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strong migration approximation are compared to the exact results obtained from
(3.47), (3.48) and (3.49). This gives an impression of the parameter space cov-
ered by the approximation. The results shown is for two sequences. The peaks
in the graphs for even and sink sampling are due to the fact that the exact results
cover relocation waiting time, whereas the approximation does not. The holes in
the graphs for source sampling, are due to the fact that the approximation does not
take into account the effect of early coalescences that follows from a low relocation
probability out of the source. The edges of the graph for source sampling are zero
(the approximation is exact). This is because both a maximalcovariance and no
difference in primary parameter values among demes correspond to no relocations
out of the source. Hence, both cases corresponds to a stationary distribution of
lineages where the lineages are only located in the source.

The figure 3.10 and 3.11 only shows the reliability of the approximation in
the case of two sequences. As the number of sequences sampledfrom the same
deme grows, initial coalescence rate will grow quadraticly, where as the relocation
probability will only grow linearly. The accuracy of the approximation relies on the
relationRi∗/λk. Hence, if the sample size is ten, and sampling is from one deme,
the coalescence rate will initially be(10−1)/4 = 45 times that for two sequences,
whereas the relocation probability will only the be five times larger than the case
for two sequences. This implies that if the approximation isto be as good as in
figure 3.10 and 3.11 the deme sizes would have to be45/5 = 9 times as large, that
is N = 900.
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Figure 3.10: For the death model, the graphs show the deviation of the exact results ob-
tained from (3.47), (3.48) and (3.49), from the results generated by the strong migration
approximation. The modes of sampling are from top to bottom:Two from the sink, one
from each deme, two from the source.N = 200.
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Figure 3.11: For the birth model, the graphs show the deviation of the exact results ob-
tained from (3.47), (3.48) and (3.49), from the results generated by the strong migration
approximation. The modes of sampling are from top to bottom:Two from the sink, one
from each deme, two from the source.N = 200.
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Chapter 4

Discussion

This chapter is divided into three parts. The first part is a discussion of the model
presented in chapter 3. The next part is discussion of the information in the back-
wards migration matrix, and the last part is a discussion of some general problems
in retrospective population genetic analysis.

4.1 Structured Moran Model

In retrospective genetic analysis it is crucial to distinguish between the parameters
that can at most be obtained from a data set, and what can only be speculation
as to how these parameters are produced. The only information that evolution
leaves behind in the sequences, that may be sampled at present time, is the drift
regime in each deme and the backward migration matrix. It is not possible to
distinguish actual deme sizes from other factors influencing genetic drift, such as
demography. Hence, the population size obtained from data is an effective popula-
tion size. This implies that the maximal resolution of information is given by the
vectorc = {c1 . . . cD} of scaled deme sizes, and the scaled relocation probabil-
ities, Nerij , composing the backwards migration matrix. Each deme size can be
estimated asciNe but may hide all sorts of effects producing local drift differences.
E.g. it is not possible to distinguish a source-sink functionality among even-sized
demes, from a situation of plain asymmetric migration and different deme sizes.
This composite nature of the effective deme sizes and effective population size,
leaves a lot of space for interpretation. Hence, an understanding of the extent to
which different effects may influence the deme sizes obtained from data, is of great
value.

The Wright-Fisher model describes the backwards migrationprocess and deme
sizes down to these composite parameters, and is thus in linewith what can max-
imally be obtained from data. Hence, if the relationships between effects, that
may together produce effective deme sizes, is to be investigated, a more detailed
description must be used.
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4.1.1 Model

The Moran model formulated in chapter 3 describes the relationship between de-
mographic effects, deme sizes and relocation probabilities in a population com-
posed of a source and a sink that through migration upholds anequilibrium of
deme sizes. This is done by expressing the coalescence ratesand relocation prob-
abilities as functions of birth and death rate in each deme, the covariance of birth
and death events, the fractional sizes of demes, and the total population size.

The model assumes that the asymmetry of migration is a directconsequence of
the demographic differences. This implies that the resultsderived in chapter 3 only
applies to populations where a perfect distribution of surplus individuals among
sinks is the case. The model may in principle describe gametemigration and hap-
loid individual migration equally well, if it is assumed that both gametes and in-
dividuals disperse/migrate so that all demes may be reached, and migration on
average will compensate for the difference in productivity. An example is gametes
that move around among demes until a free space is found to settle in. This free
space is found with a higher probability in a sink. However, passive dispersal of
gametes will rarely conform to these assumptions. It is muchmore likely to be
the case for individual migration, where an evaluation of habitat quality may be
possible.

In the structured Moran model each relocation probability is totally resolved
into the parametersb, d, c, Cov(B,D) andNT . This means that there is no de-
grees of freedom left in the relocation probabilities that can be used to make the
backwards migration matrix reflect features of non-abstract geographical structure
(that relocations between demes farther apart are less probable). This is possible in
the W-F model since the relocation rates here are not completely explained.

4.1.2 Results

In the model presented here, the actual deme size, and the additional demographic
effects due to local demography differences are separable in the sense that their
individual effects may be investigated. However, the elements described in the
model can not be separated through data analysis. The model only serve to add to
an understanding of the effects of demography in source-sink model on effective
deme sizes.

By an analytic approach it was found that the situations where an effect of
demography may be seen, can be described by the strong migration approximation
as long as deme sizes are moderately large. In section 3.4 thedeviation of the
effective population size arising from local drift differences due to demography was
assessed. The cases investigated assume equal deme sizes, since interest focuses on
the effects of demography differences and not those of different deme sizes. Hence,
the death model implies even per capita death parameters, and the birth model
implies even per capita birth parameters. The deviations ineffective population
size between the death and the birth model is almost 30%, in the case where the
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per capita over/underproduction is 0.4. In other words, where the source deme
produces 40% of the lineages in the sink deme. This is well within the limits of
biological realism, and more extreme source-sink relationships are not improbable.
The deviation, from the reference model with no drift difference in the demes, is in
this case almost 20% for the birth model, almost 10% for the death model. Hence,
the effective population size may be greatly influenced by demography. For larger
differences in the values of per capita parameters, the difference in effect onNe

of the death and the birth model, will be even more pronounced. Note that the
situation where a small part of the population may be responsible for the survival
of the entire population does not necessarily result in a smaller effective population
size, as one may think at first.

Through simulations it was concluded that local differences in demography
may influence not only total effective population size, but also the effective deme
sizes. That is, not onlyNe but alsoc = {c1 . . . cD}. However, this will only be
the case for very small deme sizes (N < 20), and for a pronounced source-sink
relationship between demes (per capita parameters> 1.4 and< 0.6).

4.2 Inference from The Backward Migration
Matrix

The backward migration matrix is a description of the genetic effect of migration.
Each entry is given by

rij =
cjmji∑

k∈S

ckmki

, (4.1)

whererij is the relocation probability fromi to j andmji is the forward migration
probability fromj to i. ci refers to the fraction ofNT , that is, to the actual number
of individuals in demei. The denominator in (4.1) equals the fraction size of deme
i, after the migration event, andbefore a possible regulation of deme size. This
after migration fraction size is denotedc′i.

By the simple rescaling applied section 2.1.3 to obtain the relocation rates from
the migration rates it was assumed that the denominator in (4.2), c′i, equalsci. This
corresponds to assuming that, each migration event does notchange the deme sizes.
This, however, can not generally be assumed. In a Wright-Fisher model of finite
size, migration will change the deme sizes at least to some extent. In the structured
Moran model presented here, however, migration events doesnot change deme
sizes.

To obtain the forward migration matrix from the backwards one we would have
to solve a system of linear equations for each entry in the forward migration matrix:
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mji =
c′irij∑

k∈S

c′krkj

. (4.2)

This is not possible unless two things can be assumed: First,that a round of migra-
tion does not change the deme sizes, so thatcj = c′j for all j. This this only the case
if migration is conservative or, as in the structured Moran model, if the continuous
in or out-flux from a deme precisely chancels out with the growth rate of the deme.
Second, that thec′i in (4.2) refer to actual deme sizes and not effective deme sizes.
Hence, the fact that the deme sizes obtained from data are effective deme sizes, that
contain all the un-separable factors that determine drift in addition to deme size,
makes it impossible to convert a backward matrix to a forwardmatrix, unless it can
be assumed that each deme is panmictic (In which caseciNe = ciNT ).

In conclusion, the only the genetic effect of migration, given by the backwards
migration matrix, can be obtained from a data set. Any further interpretation in
terms forward migration is highly inadvisable.

4.3 General Problems in Retrospective
Population Genetic Analysis.

The problems concerning the resolution of information thatmay be obtained from a
data set, described in the beginning of the chapter, is a typeof problems that can not
be circumvented. A second type of problems in retrospectivepopulation genetics
are the problems pertaining to the validity of the null-hypothesis, that inferences
are based on. If we are to make inferences on the population structure, we have to
be able to assume that the effects seen in data owe to structuring and not to other
effects. In other words, we must ensure ourselves to the extent possible, whether:
(I) the size of the population or and relative sizes of the demesit may be subdivided
into have not changed in the evolutionary time perspective of the Coalescent, (II )
the backwards migration matrix of a possible structure in the population has not
changed in this time perspective either, (III ) the sequences considered have not
been subject to effects of selection in the time perspectiveof the Coalescent, and
(IV ) the sequences are not subject to recombination.

These premises are difficult to establish, and ecological observations are of
little help since these can only describe features of the present population, and not
the past under study in a Coalescent framework. If such a null-hypothesis can not
be established with at least some degree of certainty, inferences from data are of
little value, since the population features listed above may produce effects on the
Coalescent that obliterate inferences on structure.

Below, some effects that may cause erroneous inferences, ifnot taken into
account, are described in brief.
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4.3.1 Non-Constant Deme Sizes and Backwards Migration Matrix

If we assume that the backwards migration matrix is constantthrough time, we
must also assume that the forward migration matrix and the relative sizes of demes
that determine the backwards migration matrix are constantin time, see (4.1).
However, changing species composition and variations due to disasters or climatic
fluctuations, may change the quality of the demes, and along with this, the demo-
graphic regimes in the demes. It is not unreasonable to expect that the forward
migration matrix will change in accordance with demography, and if this is the
case so will the backward migration matrix.

If the quality of a deme may vary over time, so will the number of individuals
it may sustain. Hence, for the same reasons as for the forwardmigration rate, deme
sizes may also change through time. These changes in population and deme sizes
may not be possible to detect.

If the forward migration matrix or the relative sizes of demes change drastically
through time, inferences on structure is not possible. However it may be assumed
that these stay the same while only the total population sizechange. This may be
the case if an area has been colonised or exposed to a disasterdiminishing the deme
size so that the sizes of all demes grow exponentially duringthe period of time that
the sample find its common ancestor. As the deme size decreasebackwards in
time, the coalescence rate will increase along with it. In a panmictic population
this will result in shorter trees with long terminal branches, and a high intensity of
coalescences before the root of the tree (Slatkin & Hudson 1991).

In structured populations this effect may confuse inferences on structure, since
the prolonging effect of coalescence preclusion on the lastbranch levels may to
some extent cancel out with the shortening effect of exponential growth.

4.3.2 Recombination

If intra-genic recombination occurs, different parts of a sequence will have differ-
ent genealogical histories. Each genealogy represents a realisation of a stochastic
process and is associated with a large variance. Hence, recombining sequences
will yield parameter estimates with a smaller variance thannon-recombining se-
quences.

The problems arise when sequences that are assumed not to recombine actu-
ally do so. neglecting the effect of recombination will in this case produce trees
that superficially resemble those for exponential growth (Schierup & Hein 2000).
These trees with long terminal branches will result becauseshuffling parts of the
sequences will make the distances between sequences more alike, resulting in a
more star-like genealogy. The two forces may be distinguished by Tajima’sD
comparing the number of pairwise differences to the number of segregating sites:

D =
Π − S/an√

V ar(Π − S/an)
, (4.3)
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wherean =
∑n

i=1(1/i). The mean ofD is independent of recombination but will
give negative values in the case of exponential growth.

The implications for a structured population are difficult to imagine. However,
the effects of recombination must be expected to obscure theeffects of structure.

4.3.3 Migration and Historical Association

If a population at some time in the past was divided into two demes, it is difficult to
distinguish two situations: First, a situation where the two demes diverged a long
time ago but where migration have occured between them sincethen, and second,
a situation where the two demes diverged recently but have been virtually isolated
from each other since then. For a range of relocation rates, and divergence times,
the mean number of pairwise differences, both for sampling in one deme and in
two demes, is the same for the two settings. However, the variances of pairwise
differences show a somewhat different dependence on relocation probability and
divergence time This implies that sets of relocation probabilities and divergence
times that produce the same mean pairwise differences may beseparated by vari-
ances of pairwise differences (Wakeley 1996).

4.4 Conclusion

An introduction to the Coalescent and the structured Coalescent have been given.
Further, the effects of a source-sink functionality on the Coalescent has been de-
scribed. This was done in a Moran model by expressing all transition probabilities
of the structured Coalescent, in terms of the birth and deathrates given by the de-
mographic regimes in each deme. The effects of a source-sinkfunctionality on
tree structure in small demes is described, and a result for the source-sink effective
population size has been given.

The Coalescent is a powerful tool in population genetics. Itis simple, and
describes the ancestral relationship of the sampled sequences. It must, however,
be used with caution. As discussed above, it is difficult to establish whether the
assumptions, that inference on the sequence sample is basedon, actually hold. Ef-
fects such as non-constant migration regimes, non-constant deme sizes, historical
association, recombination and selection, will obscure the information on structure
in the sample, if not taken into account. Hence, even though structured populations
are best described by the structured Coalescent, additional forces such as the above
may obliterate the possibility of inference.
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