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Preface

This thesis is written in order to full fill the requirementtloe masters degree. The
topic is the retrospective population genetic analysigrotsured populations. It is
a purely theoretical work, and in that respect it differs sarhat from the tradition,
of biological master thesises. | have chosen this form ouasfination of the
strength of the retrospective analysis, that is, the Coalds

In chapter one a review of the Coalescent is given. This iso@aiilistic
description the ancestral relationship of sampled seasertis in this framework,
that the results presented in the thesis, are based. Itumasisthroughout that the
sequences have not been subject to selection, that recatiobiof sequences does
not occur, and that population size is constant through.time

Chapter two contains a description of the coalescent iruatsired population.
This is the topic of this thesis, and the chapter serves todote a general un-
derstanding of the effects of structuring on the ances#altionship of sampled
sequences.

Chapter three covers my own work. Here a structured Moraneinisdore-
sented to describe a source-sink functionality in a coalgsramework. The
model is developed for an island model, and serves to imadstithe effects of
varying demographic parameters in a structured populatiaonstant size. The
Moran model is chosen since this includes the birth and deédls responsible for
demographic differences between subpopulations. The@appitaken is to resolve
all transition probabilities in the structured coalesdatu the birth and death rates
that produce them. By investigating the coalescence timeofsequences in a
source-sink system of two subpopulations, it is shown thatetfect of a source-
sink dynamic is an effect on effective population size oiflyhe subpopulation
sizes are just moderately large. A result for the sourck-sffective population
size is presented for the case of strong migration, and tleetedn genealogy
structure, for small subpopulations, is described.

Chapter four is a discussion of my own work, and of the prokleframbiguity
encountered in retrospective genetic analysis.

I would like to thank my supervisor for advice and fruitfusdussions during
the preparation of this thesis. Further Jakob Skou PedensérRoald Forsberg
must be thanked for constituting a pleasant working enwirent.
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Chapter 1

The Coalescent

This chapter is concerned with the probabilistic desaiptdf the genealogical
relationship of sequences sampled from a panmictic pdpuolalt is assumed that
the sequences an their ancestors have not been subjeadbel

Consider a panmictic population under the Wright-Fishedeho Random
sampling governs the representation of lineages through t&ind hence, the ances-
tral relationship of sequences sampled from such a populatin example of how
genetic drift affects the representation of lineages iretissshown in figure 1.1. A
straight forward consequence of genetic drift is, that theeatral relationship of
the sequences in the present generation can be represgraetriele structure. In
figure 1.2 the ancestral relationship of five lineages fromrgdL.1 is shown.

Such trees have branch levels, that are characterised Inyitheer of lineages
left from the sample, and are separated by events where mwades find a com-
mon ancestor. A probabilistic model, called The Coalescinatt describes this
process of ancestral relationship between lineages in plsanas presented by
Kingman in his two key papers (Kingman 1382(Kingman 1983). Coalescent
theory has become one of the foremost tools for populatioetygsts, when mak-
ing inferences on the trees representing the ancestrdioredhip of a sample of
DNA sequences. It is within this framework, that the modelthie remaining part
of this thesis are treated. Below the main features of ThégSoant are presented.

1.1 The Coalescence Process

The Coalescent is retrospective, in the sense that is wtgksay backwards in
time describing the ancestral process. When referringrte th the Coalescent it
we thus refer to the length of time from the present and badksvia time.

The Kingman Coalescent process, is a Markov process in continuous time
in which the branch levels are states, and the events wherkn@ages find a com-
mon ancestor, the coalescence events, are transitiongdietstates. A Markov
process is a process that has no memory, in the sense thaatisgion proba-
bilities are only dependent on the state, that the chaindsgmtly in. Hence, the
chain of states proceeds from the state where the all thageseare separate, to
the absorbing end state, where all the lineages have cedleso that only one
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Figure 1.1: As time progresses form the past, the randomIgaggf gametes to the new
generations will give some lineages more descendants akffense of others. This effect
in denoted genetic drift.
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Figure 1.2: This figure is essentially the same is figure xdept that only the only the

ancestral relationship of a sample of five sequences fromrbgent population is drawn.
As can be seen, owing to genetic drift, the ancestral relakigp of a sample takes the form
of atree.



1 2 3 4 5 6 7

Figure 1.3: The genealogy of a sample of seven sequencesdaiied line indicates
time ¢ back in time, and the sampled lineages are by this time repted by only three
ancestors or equivalence classes.

lineage is left. This last lineages is denoted the most tem@nmon ancestor. The
sequence of states between the initial and the end statendiepn which lineages
coalesce. In other words, how the topology of the tree degdbackwards in time,
is dependent on the way that common ancestors are found ametigeages.
Kingman described this in terms of equivalence relationseguivalence rela-
tion describes how many lineages that are left from the samptome time in the
past, and how many lineages in the original sample that eaoéstor is ancestor
to. If there arek lineages left at time, the equivalence relation is a settoéquiva-
lence classes, each representing a lineage attitrebeling the originally sampled
sequencesl...n} one equivalence class contains the labels of the lineages th
one ancestor is ancestor to. In other words, an equivaldass corresponds to an
ancestor. Fon = 7, as in figure 1.3, the equivalence relation at tinoeuld be:

(1,2),(3,4,5),(6,7)

In this case there are tree lineages left. These are ansd¢steequences 1 and 2,
to sequences 3, 4 and 5, and to sequences 6 and 7 respeclivat/the process
moves through a series of equivalence relations with detrgaaumber of equiv-
alence classes, corresponding to the decreasing numbeces$tars. We denote
the initial state withn equivalence classeg), and the absorbing end state with
one equivalence clas¥', The number of equivalence classes at tinie denoted
At == ‘Q[t’

The set of equivalence relations withequivalence classes is denotég. It
is obviously only possible to get to a stafec &, from a state ¢ ¥, 1, and
only a subset o will by a coalescence of two equivalence classes produce a
particular member of;. A state¢ that in one step can reach statés denoted
£ <n(formally: £ <n=¢§C @y, €] =[n|+1).

If the number of genes in the population A, then the probability that two
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particular lineages find a common ancestor in the previonsrgéion isl /N. For
large values ofV it can be assumed that the probability that more than twadine
find a common ancestor is negligible. Thus the probabilityrarfisitions between
equivalence relations is:

Pen = Oen + ey N1+ O(N2), (1.1)

wheredy,, is the Kronecker delta, (which is onegf= n and zero otherwise), and

—k(k—1)/2 if ¢ =nandk = [¢|
rey = 1 if&<n (1.2)
0 otherwise.

k(k —1)/2 = (%) equals the number of possible coalescences betweeyuiv-
alence classes. ® = {p¢,} is the matrix of these transition probabilities, then
scaling time in units ofV and passingV to infinity, so that each time step becomes
infinitely small, produces the Coalescent:

lim PNV = ft (1.3)

N—o0

where the superscripiVt] indicates that time is scaled witN, and whereR =
{rey} is the infinitesimal generator of the continuous Markov pssel.

If we for now only consider the process of decreasing the rarmabancestors,
Ay, it does not matter which equivalence class we have aftardhsition, but only
that we have a transition, so that decreases by one. Since each equivalence rela-
tion can produce a new equivalence class by coalesdgihg- 1)/2 different pairs
of equivalence classes, the infinitesimal generétor {g;;}, or the exponential
intensities of the continuous Markov proceds,is:

k(k—1)/2 ifj=i-1
gij =< —k(k—1)/2 ifi=j (1.4)
0 otherwise.

A; only determines the number of equivalence classes (amsgatdime t. Which
of the equivalence classes in a equivalence relation thalgamate, and thus
which of the possible new equivalence relations we have #fie transition is
determined by another process. This process, governinghwatfithe states withk
equivalence classes the process is in, is denbledF), is also a Markov process
and its transition probabilities are given by:

e FE=

1.5
0 otherwise. (1.5)

P(Ek—1=77|Ek=§):{

Hence, which of the pairs that coalesce, and thus whigh¢, that is reached from
¢ is uniformly distributed.

Since the lineages are indistinguishable, there is nonmétion contained in

knowing which of the particular pairs that coalesce. Therimfation is embedded
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in the distribution of the sizes of equivalence classes atengime. Given that we
havek lineages remaining in the sample, the probability of reagld particular
equivalence relation is given by:

- _n?();k!_( li)v_ Do (1.6)

wherep; . .. p are the sizes of the equivalence classes(idingman 1982).
Ly, and A, are independent, which is to say that the process that dietesm
the number of lineages remaining from the sample at tineindependent of the

process that determines which lineages coalesce in eanh @és means that the
Coalescent can be expressed in the form:

P(E,=¢) =

A = Ey,. (1.7)

In words, the probability of having a particular equivalenelation at a particular
time, can be factorised into the probability that we at tifrteave a state with:
equivalence classes, times the probability that amondnalpbssible equivalence
relations in®;, we have a particular one:

PRl =¢) =P(A =j [ Ay =n)P(E =), (1.8)
whereP(E; = &) is given by (1.6), and

) - (2k — 1)(_1)k_jj(k—1)n[k]
P(A, =il Ay =n :E (¢ : —

k=j

;257 <n,

(1.9)
wherer?(t) = exp[—k(k — 1)t/2] (Tavaré 1988). Fon = N = oo (1.9) gives the
number of distinct ancestors of the entire population ag¢tim

As long as the lineages are identical, the results above fdimited value.
However, when a Poisson process of mutation on branche ofdé is included,
they can be used to calculate the probability, that a mutaiared by some num-
ber of sequences in the sample, occured at a particular ipdinte.

Below only the process of decreasing the number of lineaggswyill be con-
sidered. The time between two such events, the coalescemeéstexponentially
distributed. Their mean and variance are:

E[T]=X"" and Var(T)= "2 (1.10)

In deriving the Coalescent under the Wright-Fisher model,have assumed
that multiple coalescence events and coalescence evehtselineages to one an-
cestor do not happen. This makes the Coalescent an apptmintathe Wright-
Fisher model. However, with large N, it is a very good one.

Since the expected lengths of the branches are givety bk — 1), the ex-
pected total length of the tre@,, ., for a sample oh lineages, or the time to the
most recent common ancestor, of the entire sample is:
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Figure 1.4: The plot shows(T,,—.,,—1) as a function of.. The last three or four branches
constitute together almost the entire length of the tree.

BT, 1] =2 (1 _ %) , (1.11)
which is bounded, in that passimgto the limitn — oo, (1.11) converges to two.
(1.11) implies that the time until the coalescence of thetlas ancestorsys .1,
constitutes at least half df,,_.;, and that the expectation @f,_.,,_; decreases
rapidly asn increases (see figure 1.4). For largethe first part of the Coalescent
process is practically an implosion of lineages. As a réBult; and73_., accounts
for most of the variability inf;, .1, see figure 1.4, (Donnelly & Tavaré 1995). This
implies, that the time to the most recent common ancestor refatively small
sample, almost equals that of the entire population.

A nice way of picturing the process of decreasing number oésiors, is by the
densities of having a particular number of ancestors remgin from the sample.
This is depicted in figure 1.5 that in kindly made availableRmald Forsberg and
Jotun Hein from a paper of their’s to appear.

1.2 Robustness of the Coalescent

Kingman derived the Coalescent for the Wright-Fisher mo8eit the results are
equally valid for other models as well.

If we label all members of a generatiop, {1, ..., N}, theny; is the number
of offspring in generatiory + 1 to the member with label in generationg. For
the Wright-Fisher model the vector describing the new garen, {vq,...,vN}
is a symmetric multinomial. The joint distribution of is said to be exchangeable
if it can be assumedj)(that the members in a generation need not be labelled in
any particular way, andi( that we can assume that thg ¢ € {1,...,N} are
independent of the;, ¢ € {1,..., N} in other generations.
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Figure 1.5: The densities of having a particular number afeators remaining from a
sample of seven sequences.

Kingman showed that the results for the Coalescent as defovehe Wright-
Fisher model, with appropriate scaling, are equally vatideny model if the as-
sumptions () and (1) applies to the joint distribution of;, and if it can be shown
that the variance of the joint distribution of, o2, converges to a finite value as
N tends to infinity. (and that the moments:ofre boundedE[v*] < M, m =
1,2,... for some number M). If this is the case, the results for thel€xmant ap-
plies, but with a time scalingV/o2. In the Wright-Fisher modet? = 1. For the
Moran modeb? = 2/N so that the time scaling in this case becomes'2.

1.3 The Mutation Process

The mutation process works to differentiate the lineagemfthe time of their
common ancestor and forward to the time of sampling. If tifsi@ntiation affects
how many offspring each lineage in the population have, oethdr or not the
lineage is likely to migrate to another population, the gdogy will be dependent
on the mutation process. If on the other hand we assume thahtiations are
neutral, the mutation process and the genealogical precesadependent.

It will be assumed throughout, that the mutational processRoisson process
with mutation ratex, and mean number of mutatiopg. This implies, that the
expected number of mutations in a lineage on a time inténimlinear function of
t, and means that the distinction between branch length amber of mutations
is a simple matter of scaling.

The waiting time to the next mutation event in a lineage isoegntially dis-
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tributed

P(T >t) =exp <—gt> , (1.12)

wheref = 2N . is a composite parameter that is often used, sinaed /N can not
be separately estimated on less one of them is known.

The number of mutations separating two sequences is gavéynevo com-
peting exponentials. Whether two lineages will coalesc, for whether one of
the two will mutate first is governed by the relative size @& towalescence rate and
the mutation rate. Since the two processes are indepenitienprobability that
they coalesce first is

1
1+
which is the familiar result for identity by descent. Hentlee expected number

of mutations occurring in both lineages before they coagescgeometrically dis-
tributed with parameter/(1 + 6).

(1.13)

1.4 Measures of Divergence

The two most widely used measures of divergence betweersegsi are the num-
ber of segregating nucleotide sites, and the average nurhpairwise differences
in nucleotides. The average number of pairwise differeic#se average number
of differences between two sequences randomly chosen frerpdpulation. This
number can be estimated by.

2 .
E[lL;] = e ;HU =0, i,je{l...n} (1.14)

(Tajima 1983), wherél;; is the number of differences between sequericesl;.
This follows from the fact that the mean branch length sepaydawo sequences is
2N, and that the rate of mutation in any of the lineage®.s

The number of segregating sites is the number of sites indimpared locus, in
which the sampled sequences differ. BStandIT have to be scaled with the length
of the sequence to obtain a measure useful for comparisosuresa However, in
the following, when referring to these measurgsyill be the mutation rate per
sequence of equal length, so that scaling is not needed. ruinelenfinite sites
model and with random mating, one mutation corresponds écsegregating site.
Under the same assumptions the mean number of segrega#agssi

= 6 — 2 1
E[S] = N:“ZkE(Tk—»k—l) = 5 Zk m =40 % = CLQ, (115)
k=2 k=2
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wherea is the sum(1+1/2+---+1/n—1) (Watterson 1975). Here, the first term
of (1.15) is the total branch length, (the mean length of émahch level, times the
number of lineages in that branch level), times the mutatite, scaled withV.
Note that the total branch length is given m;i 2/k. So for two sequences the
two measures have the same mean.

An advantage of the number of segregating sites over the auoflpairwise
differences, is that it has a smaller variance, but a dralwlmthat the number
of segregating sites obviously depends on sample size @7)19The number of
pairwise differences takes the frequencies into accouhtr@as the number of
segregating sites does.

A way of characterising the proportions of the tree is thiotle sizes of ex-
ternal and internal branches. A branch is said to be extéiitahas one end at
t = 0. Otherwise it is internal. The mean number of segregatitgs $n external
branches is given by:

E[S.] = 6. (1.16)

The mean number of segregating sites in internal branches is

E[Si] = (a — 1)6. (1.17)

(Fu & Li 1993) The relation between these two measures casée to test devia-
tions in tree structure, from the expected branch lengthgtons of the standard
Kingman Coalescent.
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Chapter 2

The Structured Coalescent

In this chapter, the structured Coalescent is describee. fif$t part contains the
general probabilistic description of the genealogicakpss in structured popula-
tions. Only the process of decreasing number of ancestensiteldA; i the previ-
ous section, will be considered. The second part summetisageneral effects of
structuring on the Coalescent. The third part is a briefemeion of different mi-
gration regimes. In the last part the implications of stetis described in detail
in terms of an island model.

For the sake of exhaustiveness | will limit the scope of tHk¥gng to island
models with abstract structure. That is, | will not considgplicit geographical
structure such as stepping stone, lattice or torus modetthét | will not consider
results for varying deme sizes and hence neither resultaéta-population struc-
ture. | choose this seemingly narrow scope, because thigeaded as a review
on the very nature of structuring, and not of the many othterces that is often
considered in conjunction with structure. The motivation doing this, is to re-
view the variety of ancestral relationships, that thesatiradly simple models can
produce.

2.1 The Coalescent with Migration

Here the structured Coalescent will be considered for adithgbecies in the is-
land model. However, the results derived account for théodipsetting as well,
with population size equal t&v;/2, if the following applies: () the species is
monoecious, (or dioecious if the migration pattern is sebependent). () within-
population mating is random with selfing in each deme at agqtml to the recip-
rocal of the deme sizeli() migration is gamete migration (Nagylaki 1980).
Consider a population subdivided into a number of subpdionis. or demes.
The set ofD demes is denoted = {1,..., D}. From the time of sampling and
back to the most resent common ancestor, a decreasing noifriverages will at
random times change their location among theemes. This results in a Markov
chain with state spack Each stater € I is a d-vector that describe the location of
the sample among the D demes. §gjs the number of lineages in demeSuch
a vector is denoted’ if a; = 1 anda; = 0 for j # i. |a| designates the number
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of lineages left in the sample.

2.1.1 Forward migration

When considering forward migration among demes, we mu& imamind, that
the object of study is the migration of individuals or ganset®ligration rates are
only a modelling tool, to describe this process. Keeping thimind will ease
understanding of the structured Coalescent.

A migration rate is the probability that one particular gégma deme migrates
in one particular generation. It can be interpreted as timebew of migrants from
deme: to j divided by the size of demé That is, the forward migration rate is
expressed in terms of the corresponding deme size that gemigsate from.

The forward migration regime governing the location of ine&ge in the pop-
ulation is described by a Markov chain. The transition philits of this Markov
chain is the per generation probability, that a lineage atég from deme to deme
i mj; for j #iandl — Zj;éi mj; = 1+ m;j for j = i where

mij; = — Zmﬂ (21)
J#
The model can be deterministic in the sense that a fractignof deme; mi-
grates to deme each generation, giving:;; N; migrants fromj to 4, and it can
be stochastic, that is, each individual migrates indepathdgiving a binomially
distributed number of migrants; ;; N;.

Nested within these two models, we also have to distinguettvéen gamete
migration and individual migration. With gamete migratithe new generation in
each deme is sampled partly from the gamete pool of the demdepartly from
the gamete pools of the other demes, or from a gamete pool gfants from
all demes. Here the migration is an integrated part of thepiag process. In
such a model migration is more properly denoted dispersdahfee good reasons:
(1) Migration is not dependent on any properties of the demeerdlzan be no
connection between potential over or under-productionnaigdation, if all gamete
pools can be assumed to be infinitely large) Gametes do not think, and they
certainly do not evaluate their possible success in a nevedém) Gametes spread
by external forces independent of habitat quality.

With individual migration, the migration step happens befsampling of the
next generation. If the number of immigrants and the numbenugrants are
not the same, the deme size is obviously altered, until thepkag to the next
generation among the lineages in the deme, regulates the sieeto the original
size, N;. This model allows for a possible evaluation the habitatityjuaHence,
individual migration may be caused by a source-sink refatiip between demes,
and is thus more in line with the conventional notion of thentenigration. In the
following, however, | will stick to convention anduse thegration term for both
gamete and individual migration.

12



2.1.2 The Genealogical Process

Let P,(B;|a;) be the transition probability fromy; to 5;. In the case of gamete
migration, the transition probability is straightforwérdjiven by

(?)/NHO((UN)?) it 6 =0 — 1

Fi(Bilei) = 1 — <O;> /Ni +O((1/N)?) if B = ’ (22)
O((1/N)?) otherwise

since the migration step does not influence the deme sizes.

In the case of individual migration, migration happens befsampling to the
next generation, from the deme gamete pool. Because thatmigstep is separate
from the sampling step, the number of different lineagesha&n gamete pool, is
dependent on whether migration causes a net influx or efftuw the deme. With a
net influx the number of lineages in the deme before sampdind thus the number
of lineages that constitute the gamete pool, is larger, hadother way around,
obviously, for a net efflux. If we lefi/,; denote the number of lineages added to
the deme after migration\{,; may be negative), then the transition probabilities
are

<O;> /(NZ + M*z) + O((l/NZ + M*i)z) If ﬂl = 0y — 1
PBilea) =4 1 - (C;') J(Ni 4+ M) + O((1/(N; + M.i))?) if 6 = o
O((1/N; + M,;)?) otherwise.

(2.3)

It is assumed, that the migration rate scales withas N1 goes to infinity, so that
the number of migrants stays finite:

lim CiNiji = Mj' (24)
ies
wherec; is the fraction of the total population siz&/r, that deme constitutes.
Scaling time in units ofNy — oo so that each time step goes to zero, we get
the continuous Markov process for the genealogical procgssvith infinitesimal

generator for both gamete and individual migration

2 K]
€S 2) "
0 otherwise

(O‘ o ifg=a—e
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The only difference between this result and (1.4)) is, thigtis a result for one out
of several demes, that together form the population.

In cases where assumption (2.4) do not hold, where the nuofbeigrants
M,; can not be assumed to be negligible compared to the demetsieggenealog-
ical process under individual migration can not safely becdbed by the simpli-
fication (2.5) unless it is assumed that the deme sizes avdated toN; before
reproduction.

2.1.3 Backward Migration

The forward migration rates were expressed in terms of ttecfi the deme, that
the lineage was in before the migration event, that is, thmeadthat the lineage
emigrates from.

The backward migration rate is the per generation proliglifiat one partic-
ular gene/lineage resident in demis received from demg. In other words, the
backwards migration rates are expressed in terms of the dizeehat the lineage
ends up in after the forward migration event, rather thandime size, that the
forward migration came from. Since we assume that each trogravent does not
change the deme sizes, the rates for the backward procdssrishy

N

1] . . -
! _N%- (Zh# thhi) ifi=j

wherer;; designates the probability that an individual located imdé was lo-
cated in demg in the previous generation. Hence, just as for the forwatekrae
have thatzj ri; = 0 and thatr;; = — Z#j ri;. The r’ refers to relocation. I will
use this word instead of migration, to emphasise that theggof the lineages
changing location backwards in time, is not to be thoughtsad arocess of actual
migrations happening backwards in time, but only as a setalfgbilities, describ-
ing migration in a retrospective fashion. The matrix, disiag this process, will
nevertheless be referred to as the backwards migratiorixnatr

When modelling population genetics backwards in time,gtigial to consider
throughly which properties of the corresponding forwarddelpthat may inferred
from the backwards model, and which features that can natfeeréd. This will
be addressed in the discussion.

In the Markov chain describing the backwards migration pss¢time is scaled
with N, so that it becomes continuous &% is passed to infinity. It is assumed
that the relocation probability scales with thg- as Ny — oc. This implies that
the number of migrants do not go to infinity as the populatiae does. Formally
it is assumed that

(2.6)

th CiNTTij = Rij7 (27)
ies
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which is a consequence of (2.4). Under the assumption (&:&)ignore terms
smaller thanO(1/N). This means that we ignore the probability of having more
than one relocation event affecting our sample each geoerdthe Q-matrix gov-
erning the continuous Markov process of relocation evésithen given by

airijciNT if 0=a-— et + ¢’ for i 75 i
Jim Np{P(Bla)—da s} =4 > ailrileiNy it 8=a
P00 eS8
ies 0 otherwise,
2.8)

since the individual lineages change location indepemgergain the time is
scaled in units ofV; as Nt is passed to infinity. The Markov process governed by
the infinitesimal generator (2.8), can also be thought of system ofj«| Markov
processes, each describing the location of one partidakeade.

2.1.4 The Combined Process

Combining the independent Markov processes of the migratial the genealogy,
we get the continuous Markov process for the structured&soaht. The infinites-
imal generator of this Markov chain is the matrix:

a;rij N if 3=a—¢ +eifori#j

<O;>ci_1 if 3=a—¢

Qa,ﬁ = o . .
— Z(Q)CZ_ +ZO¢Z‘7“UNT Ifﬂ:a
€S €S

0 otherwise.

(2.9)
It is implicit that the infinitesimal generator of the cométhprocess is only given
by Q if |a| > 2 and is zero otherwise. That is, any state- {« € I; |a| =1} is
an absorbing state. The waiting time to the next event of &amy ik thus exponen-
tially distributed, with the proper diagonal entry in then@atrix as parameter.

, (2.10)

P(T <t)=1—exp [— (Z (O;>c;1 + ZaiRij> '

€8 1€S

whereR = ¢; N7r;; is the scaled relocation probability. Since the time to thetn
event of each particular type is independent, the procesbeeesolved int@ x D
competing exponentials (a migration or a coalescence égertich deme), each
with an expected waiting time equal to the reciprocal of iteemnsity. With Ny
going to infinity, the probability of more than one event dher coalescence or re-
location is negligible, since both coalescence rate armtagibn rate isD(1/Nr).
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When an event of any type occurs, the probability that it isidigular type event,
e.g. a coalescence event in deme two, is a simple weightirigeoéxponential
intensities:

(5)=

2

P(Next event = Coal. in deme twoe= 2 . (2.11)
3 (C“) Y wiRy
~\2)" ¢ ’
€S ieS

Results such as the probability that some number of lineagalesce in one
deme before any of them are relocated to another deme is et csttaightfor-
wardly obtained from this property of exponential disttibns. Slatkin's (1989)
result for non-immigrant ancestry, the probability thattlé «; lineages sampled
in a deme coalesce before any of them relocates to anothex deemplifies the
applications. Here, even deme sizes are assumed for sityiplic

—aiL_ai k(k —1) ~(k—1)!
P(n) = kll (’;’) + krgciNp kll k(k—1) +k2R;. B, (2.12)

where the subscript means deme to some other deme, ar#},,,) = (2R +
1)+ (2R + a; — 1). Slightly modified from (Slatkin 1989).

2.1.5 The Structured Coalescent and&'st

Identity by descent results and Coalescent results argadqat since they are just
alternative ways to describe the same ancestral procédsiesmplies that existing
identity by descent results relatively easily can be careketo coalescence results
and vice versa. Wright'¢'s is defined as.

Jo— [

Fsr = T (2.13)
where fj is the probability of identity of two sequences sampled fribim same
deme, andf is the probability of identity of two sequences sampled dathpt
random from the collection of demes. Much work on structypegulations is
done in terms of'g. To evaluate these in the newer Coalescent framewayk,
must be expressed in terms of coalescence times. An adeaotaige approach is
that drift, migration and mutation are independent proegssder the Coalescent.

If we assume a Poisson process of mutation, the probabfligeatity by de-
scent of two sequences, is simply the probability that ndrnhem were subject
to a mutation before the time where the pair coalesced. Troisapility ise %,
whered is the scaled mutation rateVy, andt is time. If we letT, andT denote
the time to the coalescence of two sequences sampled frogathe and sampled
randomly from the collection of demes, respectively, then
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fo=Ble™"™], (2.14)
(Hudson 1990). Analogously

f=E[e). (2.15)
Thus, using (2.13) we obtain
E[e—GT] _ E[e—GTO]
1— E[e-T] 7

(Wilkinson-Herbots 1998). This is the exaEtr value. Slatkin (1991) gave an
approximation to the exact result, which is actually (2.ib@he limitd — 0. Using
I'Hopitals rule on (2.16) we get

For = (2.16)

E[T] - E[TY)
EIT]
Fspr measures based on coalescence times do not make full use ioffah

mation provided by DNA sequences. It only uses the inforomatin coalescence

times for sequences pairs, and not the information on treetste also contained
in sequence data. Nevertheless, it is used extensivelyeisttidies on population
structure.

For = lim Fyr = (2.17)

2.2 General Effects of Structuring

Before we embark on the results obtained for structured lptipos, an intuitive

understanding of the effects of structuring a populatiomyrbe a valuable tool
in understanding what follows. Generally, structuring gbapulation results in
three different effects, that may produce a Coalescentteyifrom the standard
Kingman Coalescent:

e Coalescence Preclusion: The relocation events in the history of the sample
or the mode of sampling, may locate lineages among demesassdme
pairs of lineages are not able to coalesce. That the numbeaticf of lin-
eages that can potentially coalesce is reduced, obvioedlyces the overall
coalescence rate. When only one lineage remain in eachasemieme, no
coalescences can occur, until relocations bring pairsieéljes into the same
deme. The time elapsing where all lineages are precluded éaalescing
will be denoted “relocation waiting time”.

e Early coalescences/Aggregation: Relocation events or the lack of relocation
events may leave large parts of the sample in a subsectitre @idpulation.
This will result in a larger coalescence rate, since linsagem the sam-
ple will then constitute a larger part of the total numberinéages in the
subsection concerned. This may be the case if large parteafample is
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taken from one deme. In this case several pairs of lineagesdraelevated
probability of coalescing before the sample spread otherede This effect
is denoted “early coalescences”. A similar effect arisesldcation is asym-
metric in a way that makes lineages collect in one or a few derfrethis
case the coalescence rate is also elevated. This effectasadE"aggregation
of lineages”

e Local Drift Difference: When lineages are relocated to other demes, the
genetic drift regime imposed on the them is most likely cleahgThis is
obviously the case when a lineage is relocated to a deme fefatlit size
than that of the one it was located in before. In addition, éldo& addressed
in chapter 3, different demographical regimes between demay result in
local drift differences

These effects will be addressed as they appear in the foltpwi

2.3 General Migration Regimes

In this section | will consider the four basic migration sagas. This section is
intended as a help to grasp the biological implications efabsumptions in back-
ward models. The four scenarios are combinations of twoestigs of relocation,

Namely, whether it is isotropic and whether it is consematMigration is denoted
isotropic, if the relocation probabilities are the samedibdemes. It is conserva-
tive, if the number of individuals relocating into a deme ¢ual to the number
that relocates out of the same deme. This assumption olhyibage the same im-
plications whether it is expressed in terms of the forwartherbackward model.
Formally, in terms of the backward model, we must have that

Ni Z Tij = ZT]'Z'N]' (218)
J#i J#i
or
ZT’J'Z'NJ' - Nz =0 (219)

J
The four general migration scenarios are:

1. Isotropic and conservative: As seen from (2.18), this implies that all deme
sizes are equal. That both relocation rates and deme siee=xyaal for all
demes implies that the forward and the backward migratiotrixnare the
same. Hence, in the forward model, the same number of indilsdgametes
emigrate from each deme, with an even probability of endingnuany of
the other demes. That is, the number of immigrants and entgeae not
just the same for each deme, it is also the same between demes.

2. Isotropic and non-conservative: Using (2.18) implies, that if the backwards
migration matrix is isotropic, migration can not be non-servative unless

18



the deme sizes are uneven. Since migration rates and lielogabbabilities

do not refer to the same deme, this implies that the forwagtatibn rates
are not the same among demes, even though the relocatioabiitis are.

Hence, in terms of the forward setting, we have a set of denithsuweven

migration rates and either a net influx or net efflux of indixats/gametes in
each deme.

3. Non-isotropic and conservative: If the migration rates are not the same be-
tween demes, nor are the deme sizes, if migration is to becogats/e. Note
that conservative migration only means that the net influkthe net efflux
from each deme is the same, not that the number of migranteeged, is
the same for all demes, or that the exchange of individuaiséges between
pairs of demes is symmetric.

4. Non-isotropic and non-conservative: Nothing general can be said about these
settings, besides that they are not included in the casesiloes above. A
special case of this scenario is symmetric forward mignatades.

2.4 The Coalescent in an Island Model

In this section, structuring in the island model will be cdesed. In the island
model, no physical distance between demes is involved. Mexvéhis does not
mean that demes separated by varying physical distanceatdsrermodelled. If
larger physical distance is assumed to lower migrationadoiity, features of non-
abstract structure can be included in the model, by settiegelocation probabili-
ties between more distant demes to smaller values.

2.4.1 Two Sequences

This section will deal with some special features of the $intywo-sequence case.
As already mentioned, comparing results for branch lengthraumber of segre-
gating sites is a simple matter of scaling, if a Poisson mea# mutation is as-
sumed. For reference, recall that the number of differebheéseen two sequences
sampled from an unstructured panmictic population is glwen

E[S] = 2N,pu, (2.20)
(Kimura 1969)

Var[S] = (2Neu)?, (2.21)

wherep is the mutation rate per DNA sequence, aig = Nr is the effective
population size of haploid individuals. In coalescencenter(2.20) follows from
the fact that the expected coalescence time of the to segsi@nthis case i%/., so
that the total branch length separating the two sequen@ég.isand from assuming
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a Poisson process of mutation. Hence, the expected coatestiene is obtained
by scaling with2x, which is the rate of mutation in both lineages. Scaled with
the mean and the variance of the coalescence time are botlh teqone. In the
following, results for expected coalescence time, and toniper of segregating
sites and total branch length will be listed in parallel,csirthey are so readily
convertible.

Lets now turn to a structured population. Notohara (1990)edhe following
general results for the expected coalescence time for tquesees in a system of
two demes.

c1 (37“1 + 7“2) + 46102NT(7“1 + 7“2)2

ET|(2,0)] = 2.22
[ ‘( )] (7“1 + 7“2) + 4(61NT7“% + CQNTT'%) ( )
E[T|(1 1)] _ 01(27°1 + 7”2) + 02(7“1 + 27”2) + 46162NT(7”1 + 7“2)2 +1 (2 23)
’ (r1 +7r9) + 4(clNT7‘% + CQNTT%) '
4eicoN 2
E[T](2,0)] = ca(r1 + 3rg) + 4eicaNp(r + 12) (2.24)

(7“1 + 7“2) + 4(61NT7“% + CQNTT'%)

(2,0) denotes sampling from two genes from deme one and mmrodeme two.
(Takahata (1988) gave a general but even more complicasedt fer D demes.)
These results are only included to show the complexity oégaranalytical results
even for very simple systems. Below some simpler speciascasll be consid-
ered.

If migration is both isotropic and conservative,implyirgat all deme sizes and
relocation probabilities are even, the results reducds{1d(2, 0)] =
E[T|(0,2)] = 1andE[T|(1,1)] =1+ 1/2R, whereR = Npr. This was origi-
nally obtained by Li (1976) who showed, that in a systenbDadlemes the number
of differences separating two sequences sampled from the game, and from
different demes is given by

E[S®)] =2DNy (2.25)

I

E[S“) = 2DNu+ (D — =, (2.26)

where N, = DN = Nrp, if each deme is panmictic. The subscripts signifies
whether the two sequences in question are sampled from the safrom two
randomly chosen different demes. Rescaling as above,)(@r25(2.26) become

E[T®] =1 (2.27)

and

BTW] =14+ ——= (2.28)



Figure 2.1: The dependence of the expected coalescencetita® sequences on the
number of demes, D and the scaled relocation probabilityti®n sampling the two se-
quences from different demes.

respectively, (Notohara 1990), (Hudson 1990) and (Hey 1991hen sampling
from different demes, the dependency on structure is $ifaigvard. The lower
the relocation probability, the longer the relocation wajttime. As shown in
figure 2.1 this effect is stronger the larger the number ofekersince this reduces
the probability that the two lineages find each other in thmesdeme. Note also,
that the effect of a higher relocation probability is strengn a more subdivided
population. In contrast, when sampling from the same delmeaniean coalescence
time is independent of the backward migration matrix anchilmaber of demes the
population is subdivided into. It seems counterintuitivet relocation probability
would not play a role, and surely is does, but the effect dfyeavalescences and
the effect of migration waiting time cancels out, so that ffeat of deme sizes
or relocation probabilities is seen in the mean coalescéme® The variance of
coalescence time, however, shows a dependendy and R for both both modes
of sampling:

D-1

(s)y — z-
Var(TV¥) =1+ DR (2.29)
D -1 1
dy — e
Var(T') =1+ DR + ek (2.30)

This is straightforwardly obtained from the result of He®91). The dependence
of (2.29) on relocation probability is intuitively obviou# lower relocation prob-
ability will result in a stronger affect of both early coatesces and relocation
waiting time. This implies, that the probability of shortdavery long coalescence
times will increase, thereby increasing the variance.

Slatkin (1987) elaborated on the result by Li, by showing {@&25) also holds,
if migration is only isotropic and not conservative. In thaseFE|[S;] is calculated,
by weighting each deme by the reciprocal of the deme sizelnanljt[S(s)] is a
weighted average &(®) over all demes,
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E[SW] = <) /N;)/D = 2N Dy, (2.31)

Zzes 1/N; Z

where N(") designates the harmonic mean of the deme si2eis, the number of

demes, ancﬂi(s) the expected number of segregating sites between two seggien
sampled from demeé. Here N, = DN, Scaling with2DN The expected
coalescence time is obtained

N®) D D D?
N N3Y icsl/Ni D7 INpY . g1/ciNt > iesC 2—1’
(2.32)

whereN denotes the arithmetic mean of the deme sizes. Note th&) (2.8 result
for sequences both sampled in a randomly chosen deme, aadesilt applicable
to any particular deme, as is (2.27). On the contrary, the@&w®g number of differ-
ences for two sequences sampled in some particular demegisd expected to be
dependent on migration. Since migration is isotropic, #leaation waiting time
when the first lineage relocates from the sampling deme isdahee for all demes.
On the contrary, the relation between coalescence rateedochtion probability
is not the same for demes of different size. This implies thateffects of early
coalescences and relocation waiting time will not be theesamong demes, and
will thus only averagely cancel out, as indicated by (2.3RB}0 sequences sam-
pled from a small deme, will have a shorter expected coahescéme, whereas
sequences sampled in large demes will have a shorter ong.wbehc; = ¢ for
any i, the result is equally valid for the collection of demes, @&adh particular
deme. (2.32) shows that if the sizes of the demes are not the, dhe expected
number of differences, will indeed be affected by structyrieven though the ef-
fect is obviously still independent of the backward migratmatrix. This follows
from the fact that the harmonic mean is always smaller thaggael to the arith-
metic mean. Hence, with isotropic migration, the expectealescence time for
two sequences sampled in the same deme, will always be |baemoine, except if
¢; = cfor all 4, in which case the means are equal. In this situation magras
isotropic and conservative, and (2.32) collapses into7(2.2

Strobeck (1987) showed that (2.25) is also obtained, wighassumption of
week evolutionary forces, as described above for the stredtCoalescent. That
is, the probability that two events per generation is ndgkg be that relocation
events, two mutation events, or a combination of both. Urhisr simplifying
assumption he showed that the average expected numbeferédides is indepen-
dent of the backward migration matrix, in the case where atign is conservative,
but not necessarily isotropic. In this case, the number gifegmting sites is given

by

E[TW)] =

O] =3NS Ny =3 81 = 2Npp. (2.33)

€S

22



Comparing (2.25), (2.31) and (2.33) implies that the caoonithat makesV, and
thus the expected coalescence time independent of both sieesand the back-
wards migration matrix is not whether migration is isotmpwhich is the premise
shared by (2.25) and (2.31), but rather whether it is comsi®r; which is the
premise shared by (2.25) and (2.33).

Recall the interconnection betwedtyr and expected coalescence time de-
scribed in section 2.1.5. A result fédis can be obtained using the Laplace trans-
forms of the distributions of *) and7(?). T*, the expected coalescence time of
two sequences sampled at random among all the demes, isaibthirough the
expectations of (*) andT(4). Hence for isotropic and conservative migratia,
is given by

1
" 142RD?/(D—-1)2+6D/(D—1)

This approach is due to Wilkinson-Herbots (1998). Slakki{1'991) approximate
result for the finite island model is

For (2.34)

- 1
For = .
ST~ 142RD?/(D - 1)

(2.35)

2.4.2 More than Two Sequences

For samples of more than two sequences, the effects of stingtare still basicly
the same. However, the spatial distribution of the sampimiknger necessarily
the simple “together or apart” making the scaled coalesteate in each deme
1/c; or zero. Hence, the coalescence preclusion effect of stingtis no longer
entirely a relocation waiting time effect. Rather, the esaknce rate now depends
on the number of pairs located in the same demes so that tmepatantially
coalesce) ", (% ), as well as the sizes of these demes. Singletons obviously
have a particularly strong effect on coalescence rategedinese are precluded
from coalescing with any other lineage, and in effect dodscoatribute to the
coalescence rate at all. Further, the effect of structuisngpart from migration
rates and deme sizes, dependent on the sample size radetigetumber of demes.
The more demes, the more strongly the sample may be sepaaattthe fewer
the lineages the fewer demes it takes to separate them. sTtiie effect depicted
in figure 2.1.

Dependence on Sampling

The dependency of sampling is another way of saying that itersawhat initial
position the sample is in at time zero. The larger the relongtrobabilities the
less is this dependency. In the limit with infinitely stronggnation, there is no
dependence on sampling. This special case is consideredtiors2.4.4.
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Figure 2.2: For two demes, the figure shows the coalesceteefra remaining lineages,
if n — i is located in one deme andineages i the other. The rates are normalised with the
coalescence rate when all lineages are in one demed4, 6 ands.

If we assume even deme sizes and even drift regimes in allsldheeffect of
some mode of sampling depends on the extent to which the stage for either
coalescence preclusion or early coalescences.

The number of lineage pairs that are not precluded from sogg is, in the
case of two demes, given b — 1)+ (n—1i)(n—i—1), wheren is the total sample
size and is the number of sequences sampled from one of the demese HEkE
denotes the instantaneous coalescence rate at the timeplirsg for a structured
sample, and denotes this rate when sampling all sequences from the same, d
the dependence on sampling can be expressed as the fraction

i(i— 1)+ (n—i)(n—i—1)
n(n—1)

In figure 2.2 equation (2.36) is plotted as a functioni r different sample sizes.
Note how the implications of structuring are larger for derabamples. This is
because singletons, and the stronger effect these haveatescence preclusion,
are more probable for smaller samples.

Early coalescences are a result of low relocation proliegsilrelative to the
coalescence rate. Hence the effect may result from both étveation probabil-
ities, and from sampling several sequences from the same.d&kith a lot of
demes and a low relocation probability, sampling of the sagas from the same
or a few demes, may greatly diminish the time to the most tecemmon ances-
tor. This is because most or all lineages from each deme wallesce before they
are spread out into solitude, and thus imposed by the extitng/dime until a
relocation into an occupied deme. Recall that for a samgdentdrom only one
deme, the probability that all of the lineages coalescerbedny of them migrate is

1, (3)/ ((;) + z‘rijN> (Slatkin 1989). That this is a sum of weighted exponen-

tial intensities gives a good perception of the interplaieen early coalescences
and relocation rate.

0 =

(2.36)
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Tree Topology

The tree describing the ancestry of the sample canstéke— 1)!/2("~1) distin-
guishable topologies, and the effects of sampling is matdtkin the topology of
the tree.

Early coalescences will result in monophyletic trees, thatrees where se-
quences sampled from the same deme, coalesce to one arfoestach deme,
before any relocation events occur. The larger the relocgirobabilities and the
more distributed the sample, the more probable will parapayphyletic trees
become. Hence, given the mode of sampling the topology otrde contains
some information about the migration rates. This inforovativas incorporated
into a cladistic measure of migration by Slatkin and Maddi§€t989). For a sam-
ple from two demes each topology may be characterised by mn@imumber of
relocation events needed. The approach is a simulatiord lmas® building a cat-
alogue of these characteristic minimal relocation evemt@h array of relocation
probabilities.

Takahata and Slatkin (1989) have studied, under what dondithe three dif-
ferent phylogeny types will result. The probabilities abdaoned recursively. With
the assumption that; = » for all  andy the probabilities of mono- and paraphyly
when sampling two sequences from one deme and one from tee ath

_ 14+T7R/6+ R?/3

P(mono) = [T 5R2 T R (2.37)

P(para) =1 — P(mono), (2.38)

since we can not have polyphyly with three sequenées. Npr. According to in-
tuition P(mono) — 1 andP(para) — 0 asR — 0 The results for two sequences
sampled from each deme are not given here, but their grdplejseesentation in
figure 2.3 give a good perception of the dependencyRonThe probability of
monophyly is high if the expected number of migrants fromhedeme is smaller
than one.

Their approach, however, is not feasible for arbitrary dansjze because the
number of Markov states quickly becomes to large to handéeaapproximation
it can be assumed that there will be at most one migrationtdsefore all demes
in each deme have found a common ancestor. Under that apgatian the prob-
ability of monophyly of a sample taken from two demes obvipusrrespond to
the product of the probabilities for non-immigrant ancegsee equation (2.12))
for each deme (Slatkin & Maddison 1989).

_ B & DRNLGERONOE & S VA
P(mono) = P(a1)P(ae) = kl;IZ Wh—1) T kR X ]1;[2 G- +iR (2.39)

wherea; sequences are taken from deme one apdequences are taken from
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Figure 2.3: The probabilities of monophyly, paraphyly amdyphyly as a function of?
for a sample of four genes. Two sequences are sampled frdnoéaeo demes. Migration
is isotropic. Takahata and Slatkin (1989)

deme two. The probability of paraphyly is st(para)
under the assumption of low levels of migratiBripoly)

1 — P(mono) , since
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Expected Coalescence Time

As the number of sampled sequences grows it becomes inagbadifficult to find
the expected coalescence time analyticly. The number okdWastates rapidly
becomes immense, and so does the number of linear equdtiahsjust be solved
simultaneously, to get an exact solution for the mean.

Following the recursive approach of Tajima (1989) Notol{ae90), and Wake-
ley (1998), stating the process as a Markov chain witistates and infinitesimal
generatol, it is possible to calculate the expected time to the mosimecommon
ancestor, or to any other branch level in the tree as

X
1 ..
BT =—+ Y pm (2.40)
J=1g#i
Takahata (1988) approached the problem in essentially dhee svay. He
showed, that for two demes of even size, and with isotropit camservative mi-
gration, the expected coalescence time from three to twoesegs is given by

_ 3+2R

B ) = 2t (2.41)
Eﬁ@ﬁﬂ:éigg (2.42)

As R — 0, E[T(2,1)] — §andE[T(3,0)] — ¢. AsR — oo, E[T(2,1)]
and E[T'(3,0)] — % which is equal to the expected coalescence time of three

sequencesl/(g), in the standard Kingman Coalescent. The Coalescent under
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Figure 2.4: The expected coalescence time as a functioreafumber of lineages in the
branch level. The initial state for each branch leve([is/2],n — [n/2]), where[n /2]
denotes the integer part f 2. The extreme value of 10.93 in the last branch level, cor-
responding toR = 0.1 owes to the relocation waiting time before the lineages trexo
located in the same deme. This is expected to ke

this strong migration limit is returned to in section 2.4Mote that, for smallr,
the coalescence time for three sequences sampled in thedsamee is smaller than
is expected from the Kingman Coalescent. This results flunfdct that sampling
leaves the lineages aggregated in a subsection of the pigpuylso that a smalk
results in a strong early coalescence effect. In the lithit> 0 the expectations
correspond to the time to the first coalescence of two anck theguences in a
population of sizeNy /2.

Generally the fewer lineages there are to distribute amangesnumber of
demes, the stronger the effect of coalescence preclusience the effect of coa-
lescence preclusion is stronger in the last part of the frees will prolong the last
branch levels and thus result in an alteration in the redgproportions of branch
levels, compared to the standard Kingman Coalescent. Bgitens of many demes
the effect will not be so pronounced, since the sample indase most probably
will be highly distributed also in the first branch levels. i§Imeans that the pro-
longing effect will be strong in all branch levels, and tha thange in the relative
proportions of the branch levels will be small. When the nandf demes becomes
very large relative to the sample size, the relative propast of the the standard
Kingman Coalescent are obtained for the branch levels rgiigilly short. This
case is considered in section 2.4.5.

In these complicated matters simulation quickly becomeappealing alter-
native. Takahata (1988) simulated the mean time betwedasommce events, for
two demes of equal size. He addressed only the cases whdireetges are evenly
distributed between the two demes at the beginning of thecbréevel. Some of
his results are shown in figure 2.4. This is only a part of theegal picture, but bar-
ing this in mind, it nevertheless presents some generalriemand the magnitude
of the effect of structuring in the different branch levéel$ie effect of is generally
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most conspicuous in the last one or two branch levels. If #mepde is not taken
evenly among demes, as in figure 2.4, the effect of longeblasiches will be even
more distinct, since early coalescences will make the fiemtd¢h levels shorter.

As a shortcut from simulations in these complicated matigpproximations
are of great value. Takahata (1991) investigated the Caatesinder the low mi-
gration limit for a set of equal sized demes and isotropicratign. In this case
it is posited, that the relocation probability is very lowatése to the coalescence
rate within demes. Hence, if the sample is taken frowf the D demes, it can
be assumed, that the time it takes for all the sequences,dmifia common an-
cestor in each deme, is very small compared to the time istékethe remaining
lineages to find a common ancestor. The latter time is mualelgrsince the re-
location events bringing two singletons together in a demevary rare. When
this does happen, it is additionally assumed, that the jhitityaof a coalescence
before one of the lineages relocates from the deme agaireisTnis assumption
is valid since it is assumed that the scaled relocation fmbtyais much smaller
than one. In conclusion, if the time to find a common ancestaach deme is
negligible compared to the time it takes for the lddineages to find a common
ancestor for the entire sample, the time to the most recentrmmn ancestor of the
entire sample is approximated by the time it takes for thedasngletons to find
a common ancestor. The mean time to the most recent commestanof this
simpler process is given by

D -1 1

Erow[Tr] = 5 (1 — E) , (2.43)

whereR = DNr, and the subscripfl’, signifies total expected coalescence time.
Under these conditiong, is obviously an important parameter in determining the
total expected coalescence time. On the contrary, it is welgkly dependent on
D.

If, on the other hand, the scaled relocation probabilityesiarge, there is no
dependence of sampling, and the total expected coalestiameé approximated
by that of a panmictic population (The strong migration timill be described in
section 2.4.4)

Enign[Tr] =2 (1 - l) : (2.44)

n

Takahata showed through simulations, that the low and tjte igration approx-
imation is precise fod N» < 0.1 and> 10 respectively. He further suggested an
interpolation of the two results, to cover the intermedjzdeameter range

Elnterpol.[TT] = % 2 <1 - %) (245)

For the appropriate magnitude of migration each of thesg@od approxima-
tions. However, it is obviously a problem that previous kiedge of at least the
magnitude of migration is needed to pick the right approxioma
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Total branch Length

With a sample larger than two, the conversion between coatheg time and total
branch length or number of segregating sites, is not passibless we know the
branch level lengths of the tree. Hence, it is more straigiwérd to calculate it
directly, as described above for expected coalescence time

X
k qij
E[T(Z-)]:q—_—i- > q—_JE[T(j)]. (2.46)
=g

Note that the nominator i& in the first term. & denotes the number of lineages
left from the sample. By this approach Wakeley (1998) presknesults for the
total branch length of trees from samples of three sequeas®sMing isotropic
and conservative migration. As a reference, recall thatdta branch length for
three sequences in a panmictic population of &Vze= DN is three.

E[T5(3,0,0)] = 3 (2.47)
BlT5(2.1,0) =3+ 2 (2.48)
E[Ts(1,1,1)] =3+3 2%;[71”, (2.49)

where the subscriptB, signifies total branch length. As for two lineages, the
expected total branch length, and thus the number of segrggstes in a sample
of three sequences, is independent of migration, if the gamgaken from one
deme. In other words, it is not possible to to make inferermeshe level of of
structure from the mean number of segregating sites frostype of sample, as it
is not for two sequences from the same deme.

The results (2.48) and (2.49), show an expected dependenszngpling. The
more distributed the sample is among demes, the strongbe iddpendency on
migration, since the possibility for early coalescencesrelese as the sample is
taken from more demes. The mean total branch length for eguences, sampled
in the same deme, is not independent of the backwards nugratatrix (Wakeley
1998).

Based on the results for one, two, three, four and five segsent/akeley
suggests an expression that might approximate the totathdangth for arbitrary
nandD:

n—1 d—1
1 1 1
E[Tg(aq,q9,...,aq)] =4 ( E B + B E —,) , (2.50)
i=1

1
i=1
whereR* = NDr/(D — 1) is the scaled relocation probability of reaching one

particular other deme, andlis the the number of demes that the sequences are
sampled from. The accuracy of the approximation depend® omand how the
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lineages are sampled among the demes. rnFer 4 sampled from one deme, the
approximation is fairly accurate, and the error is at most 18 the number of
demes approaches infinity the value for the sample configustl, 1,...,1) and
(2,1,...,1) converge to the value obtained by (2.50)

The few existing exact results and approximations are fallssamples and
very simple model settings. Beyond this level of complexatyd for large samples,
simulation is the most appropriate approach. For a modelofdemes, Tajima
(1989) has simulated the dependency of the mode of sammmiipé number of
segregating sites. The figures 2.5 through 2.10 summerisas sf his results.
Below, the main features of the figures are listé&d:, j) designates the expected
number of segregating sites in a sample séquences taken from deme one and
j sequences taken from deme two. Note that the figures useediffeotation for
population sizes and relocation probabilities.

Isotropic and Conservative Migration: (figure 2.5) The effects of sampling are
symmetric because of the complete symmetry of the modelvales forS(n/2,n/2)
increase a® decrease, and the effect of coalescence preclusion bestroeger.
S(n,0) and S(0,n) are smallest forR = 1. This is where the effect of early
coalescences is largest compared to the effect of coalesgeaclusion.

Conservative Migration N; < Ny: (figure 2.6) AsR decreases(n,0) decreases
since the lineages spend more time in the small deme theyaampled in. As

R decrease$(0,n) increases because the lineages spend more time in the large
deme. Note in addition, that they do not decrease and ireraathe same rate.
This is due to the fact that the relocation probabilities raoethe same. We have
thatr; Ny = ro N, implying thatr; > ro. Hence, if N is constant and R becomes

a factor smaller, the; will decrease more in absolute value than

Isotropic Non-Conservative Migration: (figure 2.7) As the relocation rates in-
crease, the values converge to those expected in a panmdgidation of size
4NNy /(N1 + N2). That is, as the the dependence on sampling decreases, the
total branch length behaves as in one population with sizaleg the harmonic
mean of the deme sizes.

Unidirectional Relocation into a larger deme N; < N,: (figure 2.8) AsR in-
creases, the values 6f(n,0) increases converging to the values $f0,n) as
R — o0, in this limit case, all lineages will instantaneously Ete to deme two.
S(0,n) of cause is unaffected by migration.

Unidirectional Relocation into a smaller deme N; > Nz: (figure 2.9) AsR in-
creases, the values 6f(n,0) decreases converging to the valuesSgh, n) as
R — o0. S(0,n) is of cause unaffected by migration.

Unidirectional Relocation into a deme of the same size: (figure 2.5)S(n,0) de-
creases ast increases. S(n,0) is large whenR is small. S(0,n) is of cause
unaffected by migration.
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Figure 2.5: Expected numbeéi(i, 50 — i), of segregating sites in a sample of 50 sequences
among which; are sampled from deme 1 and — i are sampled from deme 2R; =
AN;ri;, 0; = AN;u. 01 = 0 = 1 andR; = R, are assumede, R; = 0.1; 0, R1 = 1; 4,

Rl = 10; <>, Rl = OQ.
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Figure 2.6: Expected numbeéi(i, 50 — i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and — ¢ are sampled from deme 2R; =
AN;ri;, 0; = AN;u. 01 = 0.1, 6, = 1.9 and Ry = R, are assumeds, R; = 0.1; o,
Ri=1; 4, Ry =10; 0, R = o0;
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Figure 2.7: Expected numbeéi(i, 50 — ), of segregating sites in a sample of 50 sequences
among which; are sampled from deme 1 anfl — ¢ are sampled from deme 2R, =
4Nirij, 0; = 4N1,u 01 =0.1,0, =1.9 anng = 19R, are assumed), Ry =0.01; e,

Rl =0.1; o, Rl =1; <>, Rl = 0Q,
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Figure 2.8: Expected numbeéi(i, 50 — i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and — i are sampled from deme 2R; =
AN;ri;,0; = AN;u. 61 = 0.1, 0, = 1.9 andR, = 0 are assumea, Ry = 0.1;0, Ry = 1;

¢, Ry =10; 0, Ry = o0;
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Figure 2.9: Expected numbeéi(i, 50 — i), of segregating sites in a sample of 50 sequences
among which; are sampled from deme 1 and — i are sampled from deme 2R; =
AN;ri;,0; = AN;pu. 61 = 1.9,0, = 0.1 andR, = 0 are assumea, Ry =0.1;0, Ry = 1;

¢, R =10;0, Ry = o0;
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Figure 2.10: Expected numbeéf(i, 50—1i), of segregating sites in a sample of 50 sequences
among whichi are sampled from deme 1 and — ¢ are sampled from deme 2R; =
AN;ri;, 0; = 4N;u. 61 = 0 = 1 andRy = 0 are assumede, R; = 0.1;0, R; = 1; 4,

R1 =10; 0, Ry = o0;
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2.4.3 Effect of different deme sizes

The effective sizes of demes determine the coalescencie edeh deme. As noted
above, unidirectional relocation into a smaller deme vgtigegate lineages under a
stronger drift regime, and thus shorten the last branchideaalogously unidirec-
tional relocation into a larger deme will prolong the lastfch levels (in addition to
the effect of coalescence preclusion. If relocation is madlivectional, the effects
of deme sizes become difficult to untangle from effects jp@rtg to the relocation
regime, such as coalescence preclusion, and early coatestaggregation of lin-
eages. If relocation probabilities are very large, eachalsize can no longer have
an separate effect on tree structure, since in this casdinmbespent in one deme
between relocation events is very small.

2.4.4 The Strong Migration Limit

The limits of many of the results listed above indicate theg éffect of struc-
turing declines as migration becomes large. That is, theca¢ion waiting time
becomes smaller. In the limit where migration is infinitedyde, the waiting time

is infinitely small. This limit, the strong migration limityvas first investigated

by Nagylaki (1980), who showed that the ancestral relatigmef lineages in the
population in this case behaves as in a panmictic populatitmwever, the effec-

tive population size/V., and thus the expected coalescence time, is smaller than
of equal toNy. Nagylaki designated the resulting effective populaticre ghe
migration effective population size.

Formally, the strong migration limit is obtained by passiNig— oo for all 4
without making the assumption thhtny, .o 7+/N; = R;.. In other words, the
backwards migration matrix is held constant as the dems giago infinity. Since
this implies that as?;. — oo, a relocation event is infinitely more probable than a
coalescence event. As a result, there are infinitely mawgagbn events between
each coalescence event. This means, that the spaciabudligtn describing the
probability of finding a lineage in the different demes, &tisinary. This distribu-
tion can also be interpreted as describing the fractionefithe that a lineage will
be located in the different demes.

This may not be meaningful in a biological sense, but thetlimas properties
that can be exploited, if a model can be approximated to it tff@approximation
to be justified, eaclR;, does not have to be large per se, only so much larger com-
pared to the coalescence rate, that we can assume that wedhenany relocation
events between each coalescence event, that the restidtasvelly the same.

Migration Effective Population Size

Nordborg (1997) gives a simple and intuitive interpretataf the migration ef-
fective population size for two demes and a sample of twoesgcgs. If the time
scales of the Coalescent process and the relocation proaedse assumed to be
separate as described above, the fraction of the time tHaeagle is located in
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deme one is equal to the normalised rate at which lineagesatel into deme one,
ro1/(r12 4+ 7r91). Since the location of the lineages are independent, tltidra

of the time that both sequences are located in deme org i§12 + 721)%. The
lineages can only coalesce when they are located in the same, @énd when they
are, they will do so at a raté/c;. That means that the coalescence rate can be
expressed as the sum of the coalescence rates of the two,dsanksveighted by
the time, that both lineages are expected to be locatednegiet the deme:

2 2 2
5 1 12 I (r1i2e1 — m21€2)

A=y TR :
(7'12 + 7‘21)2 Ccl (7'12 + 7‘21)2 C9 (7‘12 + 7‘21)26162

(2.51)

SinceN, = Nr/\, N, will always be equal to or smaller than one. Clearly, it will
be one only ifrio¢; = r21¢0. In this case migration is conservative.

Since the Coalescent behaves as in a panmictic populatisize®fV, in the
strong migration limit, the Coalescent is a standard Kingmiae, with population
size N.. This implies that the coalescence rate in units\pffor % lineages, is
simply (%)

Nagylaki’'s more general formulation of the migration effee population size
is

N, = %NT, A= Z v2/e;, (2.52)
€S

(Nagylaki 1980), where; = N;/Nr andv = {v; ...vp} is the stationary spacial
distribution of a lineage. Hence; is the probability of finding one of the lineages
in demei. v and 2 are thus parameters in the a multinomial distributiescdbing
the probability of a particular distribution of the lineager is obtained as the
left eigenvector of the backward migration matrix corresgiag to the eigenvalue
oné. To explain,) is the sum of the probabilities, that two lineages are found i
the same deme (the fraction time they spend together in graefimultiplied by
the coalescence intensity for two lineages in that detyié.can be expressed as a
harmonic mean, and sin¢e, ¢; = 1 we have that

1/\ = 1/2 I <N wile/v) = 1, (2.53)
= (aln) ~ 2
since the harmonic mean is always less than or equal to tharetic mean.
Hence,A > 1 and N. < Nr with equality if and only ifv = ¢, i.e. that we
have for all demes, that the probability of finding a lineageideme is equal to
the fraction of the total population size which that demestituies. IfR denote
the backward migration matrix, we have thétR = v” (v” is the pranspose of
I/), Implylng thaty; = Zj VT = VT + Zj: i ViTji Hence,N. = Ny if and
only if

LA left eigenvector with corresponding eigenvalue one, ésdtationary distribution for a matrix,
since that eigenvector can be multiplied by the matrix withahanging.
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CiTii + Z CjTji = Cj. (254)
JESjF#i
Multiplying by Nt on both sides, we see that this is only fulfilled when migratio
is conservative. i.e. when the sum of all scaled relocatimbabilities including
the one representing no relocation, is equal to the sizesofidéime.
With isotropic migration and uneven deme sizes, the mignatiffective popu-
lation size is given by

N, =DN®, (2.55)

where N(®) denotes the harmonic mean of the deme sizes (Nagylaki 1993.
result is effectively the same as that of Slatkin (2.31) fosstrong migration.

As far as the robustness of the strong migration approxandt concerned,
recall that Takahata showed that with even deme sizes atmdpgomigration, the
strong migration approximation is valid as long4gr > 10.

Total Tree Length

The expected time, in units a¥7, to the most recent common ancestor of the
sample, is not surprisingly given by

-1
V2 1
li 1) = -+ - — .
lim B(Tr) (Z Ci) 2(1 n) (2.56)
€S €S

(Notohara 1993), and in units @¥. as given by (2.52) the familiar result for the
Kingman Coalescent is obtained

1
lim E(T,_1)=2(1-=), 2.57
Rii%oo( 1) ( n) (2.57)
1€

(Kingman 1988).

Location of the Common Ancestor

If the population is subdivided int® demes, the Markov process of the structured
Coalescent ha® absorbing states, each corresponding to a common ancestor i
some of theD demes=’ = {a € I; i € S; o; = 1; 0 otherwisg. Following from

the fact that in the strong migration limit, the distributiof the lineages among
the demes is stationary, the probability of some particldeation of the sample

is independent of any previous location. This implies, ti location of the
last two lineages is independent of the location of linedgefere the point in
time where the sample coalesced into these two remainiegdies. As a result,
the absorbing state of the Markov process is determinedysojethe stationary
spacial distribution of the last two lineages, and the phdligs that the lineages
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will coalesce when located in the same deme. In conclusieptobability of an
absorbing state’ is given by

. 2/
lim P('|a) = % foralla € I, |a| > 2, (2.58)
f g™ > _(/e))
jeS
(Notohara 1993).

2.4.5 The Large D Approximation

The large D approximation, (Wakeley 1998, 1999 and 2001pased on the as-
sumption that the number of demes is so large, that it is velilkely that a lineage
relocates to an occupied deme, and thus that the probathiitymore than two
lineages collect in one deme is negligible.

Wakeley divides the ancestral process into a scatteringgphad a collecting
phase. The scattering phase is the process ongoing fromzgénoeuntil the all
remaining lineages are in separate demes. During this pbalethe probability
of coalescences between lineages in the same demes amaticglcavents to un-
occupied demes, need to be taken into account. Sampliegquences in demie
the probability of having:; lineages in deméat the end of the scattering phase is

/ S (20, )

where M; = Zj 2Nr;j, S](.’) is an unsigned Sterling number of the first kind,
andz() = z(x —1)---(z +r —1). Since the events in the different demes
are independent, the density of the sample at the end of #tegng function is
P(n'|n) =[iZ, P(n'| n)

The collecting phase is a Markov process of relocations éetwunoccupied
demes, punctuated by rare relocation events to demes alogadpied by a lin-
eage. Analogous to the approach taken by Takahata (199h)sféow migration
approximation, Wakeley assumes, the collecting phase lisustn longer than the
scattering phase, that the entire process can be appredrbgta description of
the collecting phase. This assumption is valid if the nuniifedemes is large
compared to the number of sequences in the sample.

Let p denote the stationary distribution of each lineage amoaglémes (see
section 2.4.4). This is a multinomial distribution with pereters one and =
{m1...mp} wherer; is the probability of finding a lineage in denie Let r;,
denote the probabilities of a relocation event from dérteany other deme, and
es; the average probability that a relocation from some déme j will be a
relocation to demg. The ratew, of relocations into occupied demes, is then given

by

37



/
w=2 (Z) Yoram Y ey, (2.60)
€S jes

wheren’ denotes the total number of demes left after the scattedage To
explain, this is the average probability that a particulaedge is located in one
particular deme and that it relocates from that deme, tilnesverage probability
that it relocates to one particular deme and that one péatitimeage resides in
this deme, times the number of pairs this can happen to, timedecause the
relocation event may be in both directions. The time unt! tihe next relocation
into an occupied deme is exponentially distributed withapaeterw.

The probability that the deme, in which the two demes meetdseme of type
1S

Cxi
D ics €xj
When this eventually happens, the lineages may coalesoeehbafie of them relo-
cates again. The probability of this outcome, is a simpldingbf the exponential

intensitiesl /(1 + 2N;r;.). The average probability that coalescence event follows
from a relocation to an occupied deme is

1
Z TN fi. (2.62)
€S

The expected number of these punctuating events that diefee a coalescence
takes place is geometrically distributed with parameéfer' /(N1 + 2r).
Multiplying the probability of a relocation into an occugdideme (2.60) by the
probability that the outcome of such an event is a coalegcg€h62) the intensity of
the exponentially distributed time to a coalescence in thlecting phase becomes

/
A:2<Z>Zri*ﬂize*jﬂjszi' (263)

€S jeSs €S

fi= ;. (2.61)

If N denotes the arithmetic mean of the deme sizes, then megdimia in
units of ND and lettingD — oo, a Kingman Coalescent results with effective
population size

—1
1
i€s jes ieS v

This means, that in the limit, where the number of demes ishntarger than the
sample, the last part of the tree will behave as a standargnikam coalescent for
a population size olV,. This collecting phase will comprise the entire tree if only
one sequence is sampled in each sample deme.
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To find some specific measure e.g the time to the most recenhoarmances-
tor, the time to the second coalescence or the total bramgjftHethe result must
be averaged over all possible outcomes of the scatteringephdence for some
sample configuratiom, the time to the most recent common ancestor is given by

P(Tr(n) =t) = > P(Tr(n') =) P(n'|n) (2.65)
Summing over all possible values ofjive the expectation ¢f

E[Tr(n)] = > E[Tr(n')] P(n'|n) (2.66)

This approach obviously eases the computational problehgswise encoun-
tered when approaching the structured Coalescent. Waketapared the approx-
imation to simulations and concluded that the lafgexpproximation is good as
long as the number of demes is at least three times the sainple s

2.4.6 Source-Sink Populations

The case of asymmetric migration is often denoted sourdessigration. How-
ever considering a source-sink system only as a system ofrasyric migration
with constant deme sizes is insufficient. The underlyingoador the source-sink
dynamic must be taken into account as well. This reason, @®ubas it may
seem, is that some demes are overproducers compensatthg forderproduction
in other demes. These local demographic differences wsllitén local differ-
ences in genetic drift, and thus influence the coalescermmgs. A more precise
definition of a source-sink functionality is: Asymmetric gration among demes
resulting from demographic differences among demes, serving talalistrsurplus
individuals from overproducing demes between under-primdudemes.

Pulliam (1988) drew attention to the fact that for many pagiohs, a large
fraction of the individuals may be located in sink demes, #rad a small source
deme may potentially supply a large collection of sink demes

A source-sink functionality as defined above, taking theenlyihg demo-
graphic differences among demes into account, has not bedeliad in a Coa-
lescent framework. The following chapter will address thabtem of source-sink
populations to its full extent, and investigate the effaftthese causative demo-
graphic differences among demes.
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Chapter 3

The Coalescent in Source-Sink
Populations

This chapter is devoted to investigate asymmetric mignaitioa system of con-
served deme sizes. A system where migration is non-corisania the sense
described above, but where deme sizes are neverthelessilibagm. In such a
source-sink system, some demes are overproducers and atbemder-producers.
Migration upholds the dynamic equilibrium of deme sizes sributing the sur-
plus individuals among sinks. Hence, the equilibrium is assmuence of the
demographic properties of the demes.

From a data set we can maximally obtain the backwards migratiatrix, i.e.
in the composite parameterg.r;;, and the fraction sizes of the demes, N.
denotes the total effective population size. Hence, theceffof demography on
local drift regimes due to a source-sink functionality be¢éw demes, can not be
distinguished from other effects on genetic drift and thnefiective deme sizes,
since the contribution of each effect will be confoundedh®sy ¢omposite nature of
effective population size.

The Wright-Fisher model describes a population down to tmeposite param-
eters listed above that may maximally be obtained from asktteHere, however, |
aim to describe how demographic differences between deragsaffect effective
deme sizes and effective population size. Since theseteffaa not be separated
from other effects on effective deme sizes, the scope of thightyFisher model is
not sufficient to investigate this.

A source-sink dynamic must be considered in a Moran modetesihis in-
corporates the demographic parameters in question. Belowdel with a scope
adequate to describe the nature of a source-sink funcitipméll be presented. In
brief, this is done by formulating a model that enables astpanvestigation of
the effects of migration rates, deme sizes and demograpbgtef

The effect of varying demographic parameters among demehealivergence
of sampled sequences, will be considered in detail.
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3.1 Setting the Scene

| adopt the Moran model, that unlike the Fisher-Wright immoates the birth and
death parameters, so crucial for this kind of modelling. cHjmally we will con-
sider the situation where a set of two dentes- {1, 2} each of constant siz#;
exchange migrants. The growth rates differ between deraeasgmmetric migra-
tion distributes surplus individuals among sinks, therebiyserving deme sizes.

In the Moran model, every unit time one lineage is randomiyp@ad to die
and one is randomly sampled to give rise to a new lineage. ¢jerach time unit,
one lineage is copied and takes the place of one that dies.aisumed, that the
lineage that dies may leave an offspring, and that an offgpmay take the place
of the mother lineage. This implies that it does not matteetiver the lineage to
die or the lineage to be split is sampled first. The birth arddbath event may
each occur in any of th® demes.

Right after the birth and the death event a migration event atgur. The
coupling between the birth-death process, and the migratiocess determines the
stochasticity with respect to the equilibrium of deme sizeshe model presented
here, these processes are completely coupled. That ig linthage that dies and
the one that is split are located in different demes, thelssiipdividual migrates
to the deme that is short of one individual. This precludgsfluttuation of deme
sizes. Migration is stochastic, as we shall see shortlgesthis is a function of the
stochastic birth and death parameters.

Every deme is associated with three parameters: A per daipitaparameter,
[, a per capita death parametér,and a deme sizey. Hence,3 is the number
of births per time per lineage, andis the number of deaths per unit time per
lineage. Thugl — ¢ is the growth rate of the deme. ffor § are fraction numbers,
it is assumed that the individuals are added or removed ralydone at a time,
so that the parameters averagely hold. The deterministenpeters are kept for
convenience.

The expected life time of an individual in the Moran modeltfwéontinuous
time) is the mean of an exponential distribution. This iraplthat for any age,
there is a positive probability that a chosen individualdmees older. Whether
this is an appropriate description of life expectancy isialge. If, however, it is
assumed that ageing plays a minor role relative to death impettion, predation
or disease, an exponential description seems reasonable.

Given the wider scope of the Moran model compared to the Wiggher
model, structure can be modelled as a function of of birthdeath rates in demes
and the covariance of birth and death events in differentedermnd not only as a
function of migration as in the Wright-Fisher model.
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3.2 Formulation of a Structured Moran Model

When the newborn individual to be added to a deme in a Morantésesampled
it is done from the collection of demes, weighted with thefbparameters and the
size of each deme, so that the probability of a birth evenemel is:

BiN;

P(B:) = > kes BeNk -

by, (3.1)

implying that

S 1. (3.2)

i€S
Analogously the probability of a death event in dehig

0; IN;

(D3) ZkeSéka

d;, (3.3)

so that

> di=1. (3.4)

i€S
In the following it will be assumed that the value@ther b or d are constant over
all demes. This is to ensure, that all demes, on averagenemb/éd in events
equally often. Since time is measured in terms of events,aksumption assures
that time has the same meaning in all demes. The model is méihed to this
premise. It is only posited to keep the results as simple ssilple. This imposes
some limitations on the composite parametgy;, that must be kept in mind. (3.1)
and (3.3) will be denoted the birth and the death rate resedctThe one of them
that is allowed to vary among demes will be referred to as tiragry parameter
and the one that is equal over all demes is denoted the seggoalameter. The
model where the death rates are even, is denoted the deat, rand the model
where the birth rates are equal is denoted the birth modek that in these models
the per capita parameter is only even among demes if all deeg are equal. In
the formulation of the model deme sizes are allowed to vaowéver, for the sake
of simplicity, explanation of results will assume equal @esizes. The effects of
different sized deme sizes will be considered in a sepaeatiEos.

3.2.1 Sampling in an Unstructured Setting

In the unstructured situation there is independence of evther birth event and the
death event takes place. Hence, the probability that oeadia is split into two
that stay in deme one is a simple product of the probabildfesdeath event and a
birth event in deme one:

P(B1,Dy) = bid;. (3.5)
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Analogously the probability that in a Moran event we have gration from deme
one to deme two is

P(BlaDZ) = b1d27 (36)

and the probability that we have a migration from deme twoeime one is:

P(Bz, D1) = bady. (3.7)

Hence, the simultaneous density®fand D is

Doy bids bads

Dy bidq body

B By (3.8)

3.2.2 Sampling in a Structured Setting

In a model with structure the events of birth and death arengdr independent.
The more pronounced the structure, the stronger the depeadkeet deme one be
the sink and deme two theource. The density of the vectofB, D) in the birth
model and in the death model can be expressed as

Dy | bi(1—s) bap Dy |dy(1—g) dag
and
Dl bls bg(l — p) Dl dlh dl(l — h)
B1 B2 Bl B2

(3.9)

respectively. In the birth model thés are substituted for terms efandp. This
way the birth and death rates can be varied. The valuesawfdp determines
the extent to which the sampling of lineages to die are skeswealy from the
unstructured panmictic situation. In the maximally stawet situation, there is
only migration from the source to the sink, implying thais one. In this case
must equali, /b, if the double stochasticity is to be retained. In the unstnec
cases equalsd;, andp equalsd,. The limits tog andh in the death model are
determined analogously. To summerige< s < 1, do < p < dy /by, by < h <
b1/d; and by < g < 1. The covariance o and D under the birth and the death
model are
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COV(B,D) = blbg(p + 5 — 1) = bl(s — dl) = bg(p — dg) (310)

and

CoV(B, D) = didz(h +g —1) = da(g — b2) = di(h — b1) (3.11)

respectively. The last two terms in (3.10) and (3.11) araiabd by expressing the
densities (3.9) only in term of one structure parameter.

To get the same degree of source-sinkness in the birth andeihih model
the value ofb; under the death model must equal the valu@-otinder the birth
model, andh, under the death model must equal the valueofinder the birth
model. Since we have that under the birth mddel+ b;(1 — s) = ds and under
the death model that; i + da(1 — g) = by we have thap + s = h + g. Hence on
the condition that both models describe the same over/pratuction situations
in the demes, (3.10) equals (3.11), and the two models calapo one. This
means that the density of (B,D) for both models can be expdeas the doubly
stochastic matrix:

Do bidoy — CO’U(B, D) bodsy + COU(B,D)

Dy bidy + CO’U(B, D) body — COU(B,D)

B By (3.12)

In the case of maximal covariance, we have a maximally stradtscenario.
Here the covariance has the maximal valué,af, and there is only migration from
the source to the sink. That is, the minimal migration nee¢dexbmpensate for the
differences in demography between the two demes. In thistiva density of the
vector(B, D) is:

Do 0 do
D; bi  badi — bido
B By (3.13)

A deviation from the maximal covariance will result in adiiital symmetric mi-
gration between the demes. Hence, the migration betweeatethes can be sepa-
rated into an unidirectional compensating migration $gy¥o conserve deme sizes
and a symmetric mixing migration serving only to mix the figes in the demes.

45



In the maximally structured situation the probability offditsin the source is
governed solely byls in the source, and bd; in the sink, sincéP(Bz|Ds2) = 1
andP(D;|B;) = 1. In other words, maximal structure corresponds to a sioati
where, if possible, an empty space in a deme will always leslfillith an individual
born in that same deme. Hence, maximal structure is thetisituarhere we have
as many split events with no migration as the the smallesteparameters allow.

The diagonal entries in (3.12) represent both the protiglafian immigration
event and an emigration event, depending on which deme sdsned. Here how-
ever, since these are equivalent descriptions in a two-dsistem, all migration
rates can be expressed in terms of immigration rates. Thexnuscribing the
probabilities of migration events is:

1-— bidj - COU(B, D) bld] - CO’U(B, D)

E=1" 44~ Cov(B.D) 1-bydi— Cou(B,D)

(3.14)

Note that the probabilities in this matrix are the probdiesi of migration of some
lineage in a particular deme, and not the probabilities omration of some par-
ticular lineage.

This way of describing migration allows us to separate thegfahe migration
rate that is needed to conserve deme sizes, and the parg gyahmetric, serving
only to mix the lineages between demes. The compensatingtiaig is the unidi-
rectional migration in the maximally structured scenanbere the covariance has
the maximal value. The mixing migration is given by the déyp@ form the max-
imal covariance. Thus the relative size of the two decidesttat extent a deme is
an over or under producer, and to what extent it is a high ortilonover deme.

3.2.3 The Coalescent in Two Demes

Under the retrospective Coalescent model we must condidebdckwards tran-
sition probabilities. Since the matrix (3.12) is doublecstastic, the probability
that a particular lineage in a deme is split into two in thevard model, equals
the probability, that backwards in time, a pair of lineagethe deme coalesce into
one.

In the Moran model, for each migration event in the forwarddelp both a
donor and a receptor deme for the migration is given by wheeebirth and the
death event is sampled. Hence, owing to the double stochgsiif the density
(3.12), a the probability of a forward migration event froente; to demei equals
the probability of a backwards relocation event from déntedeme;. The matrix
describing the probabilities that some lineage in a denueagd backwards in time
is thus:

| 1=10bjd; — Couv(B, D) bid; — Cov(B, D)
H = bid; — Cov(B,D) 1 —b;dj — Cov(B,D) (3.15)
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It must again be stressed that these are the probabilihas,some lineage in a
particular deme relocates, and not the probability of thecedion of a particular

lineage. Below the transition probabilities pertainingite particular lineages from
the sample are considered.

For two demes and allowing eith&pr d the probability of a coalescence event
between two lineages in denés:

2(2") (bid; + Cov(B, D))y
N;®

whereq; is the number of lineages from the sample in demd&o explain, this
is the probability, that two lineages in the deme coalestie®s the probability,
of drawing two particular lineages from the dem2/ Ny 2, times the number of
pairs in our sample( % ). The correction factop = N;/(N; — 1) designates the
probability that it isnot the same lineage that is sampled twice. If the same lineage
is sampled twice, it corresponds to the event where a newlass the place of
the mother, in which case all the lineages are still repiteskin the deme. In other
words, if this is the case, the equivalence classes repnegeghe sample back in
time would not be altered. Sindany_.., ¢ = 1, ¢ can of cause be left out if
deme sizes are large. Itis included here because large demast a prerequisite
in the Moran model.

The probability of a coalescence event of a lineage locatetemei to one
located in demg is:

ie{1,2}, (3.16)

Otl(dzbj — CO’U(B, D)) Oéj ..
N N, i,j € {1,2}. (3.17)
That is, the probability that a lineage relocates from deérnwedemej, times the
probability the birth event in demgis a reproduction of a lineage from the sample.
The probability of a relocation from demeo deme; without affecting any
other lineages from the sample is:

ildib; JC\’;;”(B’D)) < - %2) i,je{L2} (3.18)

Time and thus the transition probabilities are scaled With/o2. o2 is the
variance of the joint distribution of; € {v;,...,v,} wherey; is the number of
offspring of a particular lineage in one event. In the stadddoran Model with
no structureg? = 2/N, so we scale withV2/2. This is done to make the model
congruent with the standard results for the Coalescentsseon 1.2. Hence,
(3.16), (3.18) and (3.18) turns into (3.19), (3.21) and13.2

(Z) (bid; + Cov(B, D))y

- ie{1,2} (3.19)
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OéiOéj (dlbj — COU(B, D))
QCZ'CJ'

ije{1,2} (3.20)

Oéi(dibj — COU(B, D))(CjNT — Oéj)
2CZ‘C]'

i,j €{1,2}, (3.21)

whereg; is the fraction of the total population size that the demesttutes. (3.19)
will be referred to as the in-deme coalescence rate in de(8e20) as the cross co-
alescence rate from dem& demej, and (3.21) as the relocation probability from
1 to j. The matrix of relocation probabilities, will be referrealds the backwards
migration matrix.

The sequence of events up to a coalescence event is a Marogsprsince
the transition probabilities are only dependent on theestatvhich the sample is
presently in. After a coalescence event the number of plessthtes decreases,
and a new Markov process takes the process ahead. Wé hayestates, wheré
is the number of lineages left in the sample. The first1 states, indexed by
designating the number of tHidineages present in deme one. 56 a; = as.
There are further, two statek; 2 andl + 3, that each represent a coalescent in
deme one or deme two respectively. Only the process of dangethe number of
ancestors is considered. The rows 1 throlgh in the transition matrix) = {g;; }
are zero except:

ag(dgbl — COU(B, D))(ClNT — al)

o1 = 3.22
oy ,a1+1 2c109 ( )
o0y -1 = aq (d1b2 - COU;B, D))(CZNT - 042) (323)
C1C2
) (bydy + Cov(B, D))
)T asaa(iby = Cou(B.D)) 5
Gon 142 = c12 2cico ’
“2) (bydy + Cov(B, D))
2 2da ov(B, D))y . aias(daby — Cov(B, D)) (3.25)
Qal,l+3 - C22 201C2 -
Goi,a1 = _(QQl,a1+1 + doy,01—1 + Qo142 + Qal,l—i—?’)- (326)

The rows/ 42 andl+3 have all zero entries except 2 ;12 = 1 andg; 4343 =
1, since these states are absorbing. Hence we have a matrix:

0-[2 9]
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where the off diagonal entries &f matrix are the relocation probabilities, and the
diagonal entries are given by (3.2&). is the matrix of coalescence probabilities,
and/ is a2 x 2 identity matrix. The transition probabilities are all im@mdent
of the time elapsed between coalescence events, so the Wtaakgition matrix is

a stationary one. In conclusion the probability of a traosifrom statei to j is
given by

2
me&y+%R?, (3.28)

whered;; is the Kronecker delta Let P = {p;;}. Since time is scaled in units of
N2 /2, passing all deme sizes to infinity produces the continuoask process

2
lim PLE1 — @, (3.29)
N;—o00
icS
where[NT%t] indicates that time is measured in unitsiéf /2.

In the Moran model per definition only one event can happemahn ¢éime unit.
This may be a coalescence event or one relocation eventeHpgassing the deme
sizes to infinity only serves to change the discrete Markaircimto a continuous
process. (In the Wright-Fisher model the diffusion appmadion also serves to
make the probability of multiple coalescence or relocageents negligible.) In
other words the continuous Markov process describing thetsired Coalescent,
P, is exact in the Moran model. The only approximation invdlve the approxi-
mation to continuity.

The distribution of time to the first event of any kind is expatial with rate
parameter equal to that of the diagonal entries in Q thatesgmits the present
distribution, «, of the lineages among the two demes.

P(T>tla)=e @t = P(T<t|a)=1-—e @ (3.30)

In other words, the rate parameter of the exponential tigion is the sum of all
the possible transition probabilities given a particulistribution of the lineages:

(67}

) > (b;d; + Cov(B, D))y

2

PT<t|la) = 1l—exp|— Z<

.
i€S v

a;aj(dibj — Cov(B, D))
" Z . Z . 2CZ'CJ'
i€S jES:jF#i
Z Z a;(dib; — Cov(B, D))(c; Nt — )

+ 2CiCj

t (3.31)
i€S jeS:j#i

The Kronecker deltay;;, equals one if = j and equals zero otherwise
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The mean of an exponential distributian- e=** is 1/, so the expected waiting
time to a transition to a particular state is the inversesfréinsition rate.

Since the time to the first event of either coalescence ocatilin is exponen-
tially distributed, the probabilities of the different ews, when an event finally
occurs, is a simple weighting of probabilities. Formalhthie process is in state
the probability that the next transition is a transition tates; is

P(Next transition = — j) = (3.32)

Hence, ifC;;_.; is the event of two lineages from derheoalescing into one in
demei, C;;—; is the event of one cross coalescence of a lineage in geand one
in deme: coalescing into one in demeandR;_.; is the event of a relocation of a
lineage from demeto j, then the probabilities of the different events are:

(2) (bid; + Cov(B, D))y

;o (dib; — Cou(B, D))
PG~ : 3.34
(C] ]) 2CZCJ£ ( )
- ai(dibj — Cou(B, D))(c; Nt — o))
P(Rz—>]) - 2(;2-(;]-5 , (335)
where
&%)
( 9 ) (bid; + Cov(B, D))y
& =Y =
€S
a;a(d;bj — Cov(B, D))
i Z Z 2cic;
1€S jES:jF#i
a;(dibj — Cov(B, D))(¢;Nr —
Py it CoolB DN ) g g
1€S jES:jFi 1Cj
For panmixia and equal deme sizes, that is, if the covarianzero and
by dy a_ 337)

by dy e
we have a standard Coalescent in one demographicly homagemepulation,
since with this assumption we have (assuming infinitelydatgmes)

( >bd a;oid;b; ||
€= ~E v 2 o (2> (3.39)

€S 1€S jES:jF#i
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which is the coalescence rate fai sequences in one panmictic population (Kingman
19823). This is the case because sampling of the death and theslitit is inde-
pendent and occurs with equal probability in all demes, abttie probability of
cross coalescence is the same as in-deme coalescence. tebwith dependent
sampling of the death and the birth event, ie. a structurediemthe scaled reloca-
tion probability has to be infinite for the model to behavermanicly, as we shall

see in section 3.4

3.2.4 Coalescence Intensity and Demography

The coalescence rates depend on the demographic parametersl theC'ov(B, D).
The dependence afiov(B, D) is straightforward, and is the same irrespectively
of whether the primary parametertior d: The larger theC'ov(B, D), the larger
the in-deme coalescence rate, the smaller the relocatmmapility, and thus the
smaller the cross coalescence rate.

The in-deme coalescence rate, however, is in addition digpgron which pa-
rameter that is the primary one. In the unstructured settimg in-deme coales-
cence rate is lower in the sink and higher in the sourck i the primary pa-
rameter. If the primary parameterdsthe in-deme coalescence rates are affected
reciprocally. For the maximally structured situation, grebability of a in-deme
coalescence is governed solely din the source and byin the sink (see (3.13)).

3.2.5 Demography, Relocation and Deme Size

The asymmetry of relocation probabilities in a source-simddel is a result of the
relative sizes of the net over- or under-production in eahel The net production
is (8; — 6;) N;. In the death model it is3; IV; since the per capita death parameter is
one in both demes. Hence, the relative sizes of produétiens; N;/ >, . ¢ Br Ny

is a function of both3 an V. This implies that the migration regime in a source-
sink population is governed both by deme sizes as well asgmtacparameters.
This may seem obvious, but it is important to keep in mind aftillowing.

The relocation probability of a particular lineage from temple, which is
our concern here, is in addition dependent on the size oféheedhat the lineage
resides in before the relocation. Hence, in consideringdhlmeation probabilities
of a particular lineage, it is crucial to distinguish clegdbetween the demographic
contribution given by, d andCov(B, D) in (3.15), and the contribution of one
particular deme size. The dependence of both is seen in)(3TH# interplay of
per capita parameters and deme sizes is best described Wwyeadeples:

A small source with a large per capita overproduction andgelaink with
small per capita underproduction, (Recall that #feeand d’s each sum to one,
which imposes some restrictions 6 ¢; andV;) will result in an asymmetric flux
of individuals given by (3.15). The asymmetry in relocatimmbabilities, how-
ever, will be even more asymmetric, than would be expeciau the source-sink
relationship between the demes. This owes to the dependdrezeh relocation
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probability on one particular deme size. For a given backsaut-flux of lineages
a small deme size will give a larger relocation probabilitize drift regimes in each
deme is obviously dependent on the deme size. Besides b, e¢here is the ef-
fects of the local drift differences resulting from demqgr. Hence, depending
on whether it is the birth or the death rate that vary betwesmes, the effect of
different deme sizes may either enhance or, to some extantet out with the

effect of demography. In an unstructured setting, the defitmes will be the same
between demes if the relation between the deme sizes is &gl square of the
relation between the two values of the primary parameter.

With a large source with a small per capita overproductiahaasmall sink with
large per capita underproduction (the opposite of the cheeed, will still result
in an asymmetric flux of individuals, but this may not be refeldn asymmetry of
the relocation probabilities. This again owes to the depeod of each relocation
probability on one particular deme size. The relocatiorbphbilities may in fact
be symmetric if the asymmetry in deme sizes cancel out walatymmetry in net
flux of individuals given by (3.15). In an unstructured sedtithe relocation prob-
abilities will be symmetric if the relation between the desizes is the same as
the relation between the two values of the primary paramétence even though
there is a true source-sink functionality between the dertiés will not show in
the backwards migration matrix. Just as explained aboeedtift regimes in the
demes may be the same if the effect of deme sizes chancel thuthei effect of
demography. This may be possible in the death model. In tiie fmodel, how-
ever, the different deme sizes will accentuate the locél differences. Hence, we
may have source-sink functionality with large differenaedrift strength between
demes, that does result in asymmetric relocation probiisili

Unequal deme sizes may result in asymmetric relocationgtitities even
though the net flux of individuals is symmetric. In this calse drift regimes in
each deme are of cause solely governed by the deme sizes.

In conclusion, since relocation probabilities are comigosarameters, it is not
possible to distinguish the effects of deme sizes and trextsfffrom the demo-
graphical relation between demes.

Since, the primary subject of this study is the effect of dgraphy an not of
deme sizes, the graphical representations and explagatidine following will as-
sume equal deme sizes. This is to present the clearest lgossiture of the effects
of local demographic differences. Recall that this imptlest the per capita death
rate is equal among demes in the death model, and that theapia birth rate
is equal among demes in the birth model. Hence, in this giuidihe representa-
tion of demography in the relocation probabilities is nosalred by the effects of
different deme sizes.
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3.3 Coalescence Time for Two Sequences

In this section it will be investigated how the expected esaénce time of two
sequences, for different modes of sampling, is affectecbbslldemographic dif-
ferences. Exact results for expected coalescence timbs siructured Coalescent
can be obtained recursively. Following Notohara (1990)\Afadteley (1998), stat-
ing the process as a Markov chain withstates and infinitesimal generat@r we
have, as described in the previous chapter:

X
BT = —+ > g, (3.39)
Qix = Qix
J=1,j#i
In this model all demes are potentially different, with respto both relocation
and coalescence probability. Hence, we can not derive arg@eseact result for
an arbitrary number of demes. However, with this approacttavederive exact
results for sets of demes with specified parameter values.

The amount of calculations increase rapidly with the nundfedemes and
sampled sequences, and the results quickly become to coifigplany intuitive
theoretical value. Below we consider the exact result far tiweages and two
demes. Even for this simple scenario, the analytical resukt two complex for
any explicatory value without the aid of graphical repreéagon.

)\Z(d) _ (dlb] — CO’U(B, D)) (341)
2CiCj

RZ(;) _ (dibj — Cou(B, D))Nr (3.42)
QCZ'

v 2CiCj

The superscript$s) and (d) signifies same and different, and states whether the

two lineages are in the same deme or in different demes. Rﬁj]sis the prob-
ability that a lineage in was resident irj before the previous event, when both
lineages are in deme Rl(j) is the same just for the situation where one lineage
(s)
)
sible cross coalescence into account, wherléf#% does. Analogouslyxgs) is the

is in demei and one is in demg. They differ becausd?;;’ does not take a pos-

in-deme coalescence probability of two lineages in deépend Af.d) is the cross
coalescence probability of one lineage in dei@ one in demg. For large pop-

ulation sizes we may assume tﬁ%éﬁ) = jo). This may ease calculation of more
complicated results.
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With the notation (2,0) corresponding to sampling two segas in deme one,
the sink, and none in deme two, the source, we have for twoesegs:

1 2R}
E[T(2,0)] = —5——5 o BT )] (3.44)
2Ry AT 2Ry + A
()
BT(0,2)] = — o + — D BT(L1)]  (3.45)
2Ry + Ay 2Ry A
1
BIT(1,1)] =
R + Ry + A 4 2{Y
Ry
+ E[T(0,2)]
R + RS + A 4 2fY
Ry
+ E[T(2,0)]. (3.46)
R + RS + A 4 2fY

Solving this system of linear equations we get:

d d
K
OO OO
2R 4AS) T 2R A
2REND AN D 4 gD () n 2READ pADAD 4 gD
2R +A{Y 2R +25)

1+
E[T(1,1)] =

(3.47)

d d
2R§52) 1+ R§2) + R;l)
A A

1+

2r5 MNP AN LRI 2rEIAD A i

2R§§)+)\is) 2Réi)+)\és)

2R(y) + ALY

E[T(2,0)] (3.48)

(@) R (@)

; :

2R (14 T
2R21 +)\2 2R12 +)\1

1+

T N U T QT SR U QRO BTIEING
TR TS

E[T(0,2)] = 2R(8) N )\(s)
21 1

(3.49)

The striped area in figure 3.1 shows the range of parameteevalllowed by
the assumptions in the model. Hence, this range of paramvaiess compose the
domain on which the equations (3.47), (3.48) and (3.49) afimeld. We have as
initial condition, in terms of the forward mode, that someimum amount of one-
way relocation from sink to source is needed to compensatiéodifferences in
growth rates among demes. The larger the differences inalues of the primary
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Figure 3.1: The striped area represents the area wherertbtdus in figures 3.2 and 3.3
are defined. This domain is dictated by the assumptions imtigel, that some minimum
amount of relocation is needed to compensate for the dempbigea differences. Hence,
given the values of's andd’s the Cov(B, D) can only take some maximal value. For a
specified set o andd values these areas also represents the relative sizesartipen-
sating and mixing part of the relocation probability fromlsto source. See the text for an
explanation.

parameter among the demes, the larger this compensatiocptiein has to be.
Hence, the values of the primary parameter impose a limidéonaximum level
of structuring (maximal covariance), if deme sizes are todeserved.

As explained in section 3.2.2, the probability of a forwariyration event to
the sink of any lineage in the source, can be divided into badridity correspond-
ing to the minimal unidirectional migration needed to comsedeme sizes, and
a probability corresponding to the additional symmetrigmaiion serving only to
mix lineages between two demes. This is also true for thewaitds process, and
assuming that deme sizes are equal, the relation betweeporigensating and the
mixing migration, is also directly reflected in the relocatprobabilities pertaining
to the lineages from our sample.

Figure 3.1 shows the relation between these two types ofagtm. Consider
some value of the primary parameter on the x-axis. For arructsted scenario,
the fraction of the parameter space outside the domain (tfite area) corresponds
to the fraction of the relocation from sink to source thatampensating, whereas
the fraction of the space inside the striped domain corredpto the fraction of the
relocation that is symmetric and only serves to mix lineagesng demes. Hence,
the symmetric mixing fraction of relocation also equalsifgration from sink to
source.

In a structured scenario with a covariance of 'c’ (see figuig the fraction of
the parameter space between 'c’ and the maximal covariaeleive to the frac-
tion outside the domain, corresponds to the fraction of atign that is symmetric
and mixing. Hence the larger the covariance the smaller yhergetric mixing
fraction of migration.

Equations (3.47), (3.48) and (3.49) are plotted agaihst(B, D) andb in fig-
ure 3.2 and againstov(B, D) andd in figure 3.3 The domain shown in figure 3.1
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constitutes the base plane in the figures 3.2 and 3.3. Thagemange from

symmetry in net productivity to the case where the sourcealreet production 2.3
times that of the sink. This is well within the limits of bigial realism. In each

figure, the graphs for each mode of sampling are much alikéy, @wre is a spike

in the corner, when sampling evenly among demes. Theredheud thin spike in

the graphs for sink sampling as well, but the resolution efdhaph fails to show

it. In both figures the graphs fall off with larger covarian®¢ote that the surfaces
spans only the domain given in figure 3.1, and not the entuwarggspanned by the
two axises.

3.3.1 Effect of Relocation Waiting Time

This effect is described in section 2.2, and is responsaniéhie spike in the corner
of the graphs for even sampling in the figures 3.2 and 3.3. Xpeated coales-
cence time may be greatly prolonged if the lineages aredddatseparate demes,
and the relocation probabilities are low. In this case atsesscoalescences will be
rare. Hence, for very low relocation probabilities, lineagn separate demes will
effectively be precluded from coalescing. The effect isiobsly only in play for
relocation probabilities so low, that it can not be assunmadl the amount of time
the lineages spend in the two demes is stationary distdbutdis assumption is
treated in section 3.4. Hence, the effect is only seen indheer of the parameter
space corresponding to minimal demographic differencerdxe demes and max-
imal structure. That is, where relocation probabilities @ery low. The effect is
manifested in the results fdr (1, 1) (even sampling) and’'(2, 0) (sampling in the
sink), by the increase in expected coalescence time.

The effect is most pronounced for even sampling, since, yrcase, there will
be at least some relocation waiting time. In the case of simikpding the effect
is less strong (there is actually a thin spike in the cornémpagh the figures fail
to show it), since the possibility of a coalescence evens aae rely entirely on a
relocation event. The effect that is seen owes to cases waliereage relocates be-
fore the two lineages coalesce, so that the coalescing tfithbecomes dependent
on another relocation event. This will of cause happen vethdr probability the
larger the relocation probability is. However, the resigtwaiting time after the
first relocation event decreases with larger relocatiofbglodity. Hence, as seen
in the graph, we expect the mean of the coalescence timewaghe relocation
probability falls. For this mode of sampling, the expectedlescence time tends
to infinity as the relocation probability tends to zero, lartd relocation probability
equal to zero, the expected coalescence time is not infiRiather, for this value
the expected coalescence time is equal &ince in this situation all coalescences
will happen in the sink without interference of migration.
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3.3.2 Effect of Asymmetric Relocation Probabilities

The asymmetry of the relocation probability results in agragation effect as de-
scribed in section 2.2. The lineages will have a tendencyettobated together
in the source a larger fraction of the time, than they woulthwymmetric relo-
cation probabilities. When there is an elevated probghilftfinding the lineages
together in some smaller subsection of the population theijoasly have a higher
probability of finding a common ancestor each generation.

The covariance works to accentuate this effect. With a ¢anee equal to
zero we have a unstructured scenario, where the probabflifinding a lineage
in the source is not much larger relative to finding it in theksiWith a maximal
covariance, which means that only the relocation proldgifiiom sink to source
is positive, the lineages will aggregate in the source. Ehike why the expected
coalescence time falls of towards maximal covariance. Tagmtude of this effect
is in part determined by the difference in the primary par@mealues between the
demes. The larger the difference, the more strongly asynurée relocation
probabilities are, and the smaller the covariance has tm ledn them out. In
other words, the stronger the source-sink functionality,rhore symmetric mixing
migration is needed to counteract the effect of aggregation

3.3.3 Effect of Local Demography Differences

This effect is the one responsible for the differences betwthe graphs in fig-
ure 3.2 and those in figure 3.3. A comparison of the graphs urdi@.2 and 3.3
is shown in figure 3.4. The effect is a result of different entk coalescence rate
between the two demes. With varying birth rates among dethesn-deme coa-
lescence rate in the source is larger than in the sink (giic&rger in the source),
whereas with with varying death rates it is the other way ado(sinced is smaller
in the source). The contour lines in figure 3.4 depict theed#fiices in migration
scenario for the same mean coalescence times in each madaeldifference in
the expected coalescence times for each parameter setisegcence of differ-
ent drift regimes through the history of the sample. In othierds, the difference
depends on how much of the time the lineages spend under @hfthegimes.

For maximal structure (maximal covariance), the coaleseeate is effectively
equal to the in-deme coalescence rate in the source if theatgdn probability is
just moderately strong. This is because only the relocatiabability from sink
to source is positive and at most two relocation events veitluo. Recall that in
the maximally structured situation the in-deme coaleseenate in the source is
governed byd. The expected coalescence time for even sampling and smk sa
pling are affected by relocation waiting time for low reldoa probabilities, and
converges td).5%/d (the inverse in-deme coalescence rate in the source), as the
distribution of lineages among demes approaches staitiandin the maximally
structured situation stationarity means that the lineapend effectively all their
time in the source. For two sequences sampled in the soleexpected coales-
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Figure 3.4: Expected coalescence times for two sequendes death and the birth model.
The modes of sampling are from top to bottom: Two from the same from each deme,
two from the source. The contour lines shows which migratimenarios that give the same

mean coalescence time in the two modéis= 100.
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cence time is of caus&5?/d for the entire range of the primary parameter, since
in this case there is obviously no relocation events. In kmien, the expected co-
alescence time for the maximally structured situation ofSeavaries as a function
of d in the birth model and is constant at 0,5 for the entire randgkeé death model.

For an unstructured setting (covariance zero), the in-dmakscence rates for
the two models become more different as the difference iptimeary parameter
increases. This is because the relocation probabilitiesrhe more asymmetric,
so that the lineages are more often found in the source, asdfeen in the sink.
Hence, the total coalescence rate is more affected by tberime coalescence rate
in the source than that in the sink. In the death model, ttteme coalescence rate
is higher in the source and lower in the sink. This means thdtedifference in the
values ofb among the demes gets larger, the expected coalescenceduomés
smaller. In the birth model the in-deme coalescence rateaftected reciprocally.
Hence, in this case expected coalescence time gets ldrgdarger the differences
in the values ofl.

Figure 3.5 shows the difference in the expected coalesdeneebetween the
two models for the same migration scenarios. The differdoce@ach mode of
sampling is, not surprisingly, independent of relocatioaiting time. For some
covariance, the difference is a function of the differencthe value of the primary
parameter between the two demes. The dependence on coeafansome set
of birth and death rates, however, is not unambiguous. Fallsmovariances the
mixing migration is strong, resulting in a more uniform distition of the lineages
over the demes. Hence, the different drift regimes in thecgoand the sink, will
chancel out to some extent. As the covariance grows therelifée in figure 3.5
gets larger. This is due to the fact that as the populationrbes more structured,
the relocation probability corresponding to symmetric imgxmigration becomes
smaller. Hence, as the conserving one-way migration besonoee dominant, the
lineages will spend more time in the source so that the drifime in the source
will dominate over the drift regime in the sink. In other weyrdhe antagonistic
effect of the drift regime in the sink will decrease. In carsibn, as the covariance
gets larger, the expected coalescence time becomes mazadiégp on the drift
regime in the source.

For large covariances the difference between the modd¢sdal This owes
to the fact that, as the covariance approaches its maxintaé¢,vanly the drift
regime in the sourcer the sink is dependent on migration, depending on which
parameter is the primary one (see (3.13)). This means thatdaimal structure,
the drift regime in the source is only affected by the primpayameter in the birth
model, and the drift regime in the sink is only affected byphienary parameter in
the death model. Hence, for some value of the primary paemigie difference
between the models, will decrease towards maximal covegian
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Figure 3.5: The deviation of the expected coalescence timevb sequences in the birth
model from that in the death model. The modes of samplingrara fop to bottom: Two
from the sink, one from each deme, two from the soufée= 100
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The Model-Specific Effects of Demography

The effect that local demography differences impose on@rgecoalescence time
under the birth or a death model can be investigated by caongpéne models
to a reference with no demography differences between deSigsh a model is
produced from the present model by settbugh the b’s and thed’s in the in-deme
coalescence rate terms to 0.5.

(2) (0.5 0.5 + Cou(B, D))y
ie{1,2). (3.50)

CZ'Z

The emerging model can not meaningfully be explained framfthe elements of
the transition probabilities, and is only to be thought ohasference model with
a set of transition probabilities equal to what would be fbima setting with the
same relocation probabilities but with no demography Vara

Figure 3.6 depicts the deviation in expected coalescemse in the death
model, from the result obtained from the reference moddkentigg the local drift
differences, and Figure 3.7 shows this deviation for thinbitodel. The deviation
due to demography differences are stronger in the birth méftevever, compared
to the reference model the deviations of the coalescenes irathe death and the
birth model are equal. The difference between figure 3.6 ajualdi 3.7 owes to
the fact that these plot the inverse coalescence rateshé@xpected coalescence
times.

The drift differences in each will together with the demeesizcomprise the
effective deme sizes that may be inferred from a data set. dEhee sizes that
would be obtained from a population described by the modsdgmted here, would
thus be the deme sizes resulting in the same strength ofinrdach deme, as
described above.

Effective Population Size Description

For deme sizes of 100, as shown in figure 3.2 and 3.3, the egeocklescence
time shows only a slight dependence on the mode of samplingost of the pa-
rameter space. In the corner of the parameter space whereltivation rates
are so low that initial sampling may potentially play a rdlee difference in in-

deme coalescence rate is very small, as seen in figure 3.5.implies that for

combinations of parameter values that produce a local efffiict due to varying
demography the process can be approximated by the stromgtiamglimit (see

section 2.4.4) as long as the deme sizes are just moderatgey/(N > 100).

As will be considered in section 3.4.2, stationarity of thstribution of lin-
eages among demes, implies that the Coalescent of the senapitandard King-
man one, which again implies that the effect of a source-ginktionality on the
expected coalescence time is an effect on effective papnlaize only. Hence,
the population behaves like an unstructured populatioh different effective total
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Figure 3.6: The deviation of the expected coalescence tinvemsequences in a model
with no local demography differences, from that in the deatidel. The modes of sam-
pling are from top to bottom: One from each deme, two from thie, $wo from the source.
N = 100. The expected coalescence time for no demography diffesewere obtained
from equation (3.47), (3.48) and (3.49), setting the in-d@walescence rates to (3.50).
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population size for parameter values that give an effectsmuace-sink dynamic,
as long as the population size is just moderately large.

The source-sink effective population is described in di@tasection 3.4. For
deme sizes so small that the process can not be approximatid btrong migra-
tion limit, the demographic effects may have an effect oe swucture. This is
considered in the next section.

3.3.4 Effects on Tree Structure

Before we go on to describe the source-sink effective paojomissize that was
found to be a sufficient description for just moderately éatigme sizes, the effects
on tree structure for small demes is investigated.

For a sample of more than two lineages, the topology andivel&tranch
lengths of the resulting trees becomes interesting if tdesete from what would
be expected for asymmetric relocation probabilities budlifference in demogra-
phy among demes. This would be the case if demography change=fective
sizes of demes. Hence, the effect of local demography diffezs would not only
be an effect on total effective population size, but also feeceon the effective
deme sizes. That s, not only an effect §p but also an effecton= {c; ...cp}.

Deviations from a situation without drift difference wilelmanifested in the
tree structure if the lineages are subject to differeningfites of drift at different
periods of time. This would be the case if relocation is weictional or highly
asymmetric, and the relocation probabilities are of theesamagnitude of the co-
alescence rates. In this case, sampling from the sink valigce a tree where the
drift regime regime near the present differs from that nearrbot of the tree. If
the relocation probability from sink to source is much larfen the coalescence
rate in the sink, the sampled lineages will spend all theietin the source. Hence,
the drift regime will not differ over the tree.

If the strength of drift near present time, where the linsage resident in the
sink, is different from the strength of drift further backtime where the lineages
reside in the source, due to the difference in in-deme coafes rate in the demes,
the tree structures are expected to differ between the @atithe birth model. In
the death model coalescence rate is expected to be slowepmsant time, and
faster near the common ancestor. In the birth model it shbalthe other way
around. In the maximally structured situation, the in-desnalescence rate and
the relocation probability in the sink are equal folineages if sink deme size is
given by

(BE=1)ky

 body — bidy’
where 1 is the sink and 2 is the source. The larger the diféeremthe the value
of the primary variable, the smaller the deme size have toAssuming equal

deme sizes, these examples of parameter sets make thenr@@saqual when the
number of lineages in the sink is seven.

N (3.51)
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Primary Deme size in Deme size in
parameter  death Model birth Model

0.7 03 9 15
0.65 0.35 14 20
06 04 24 30
0.55 0.45 54 60

This implies that deviations in tree structure due to deraply are to be looked
for in this neighbourhood of parameter values.

The effect of source-sink functionalities on the ancesgkdtionship of a sam-
ple is particularly interesting for small populations, cgnit is often in the cases
where population sizes are small, that the questions coimgethe independent
survival of a demes, are asked.

Simulation

| have written a simulation programme in C that generatetesoance times and
tree statistics under a Moran model with specified parametesimulates a wide
variety of scenarios. Adjustable parameters are per chpitaand death parame-
ters of each deme, covariance of birth an death eventsiveetares of demes, total
population size and mode of sampling. In outline the sinntaalgorithm is:

1. The time to the next event is sampled from an exponentilolition, with
parameter equal to the sum of all relocation and coalesqanobabilities.

2. It is determined whether the next event it is a coalescexent or a reloca-
tion event by a simple weighting of exponential intensities

3. Itis determined which deme/demes are affected.
4. In the case of a relocation event, it is determined whetiherrelocation
is actually a cross coalescence event, and if it is, whichltmeages that

coalesce.

5. In the case of a in-deme coalescence event, is is detadmihieh two lin-
eages that coalesce.

6. 1through 5 is repeated until only one lineage remains.
7. Branch lengths and tree statistics are calculated.
8. 1through 7 are repeated 1000000 times.

9. Means and variances of of branch lengths and tree stateste returned to
output.
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The means are obtained as the arithmetic mean of the refalsloof the 1000000
runs, since each result occurs according to the densityruhdeimulated model.

The simulations were done to investigate the effects of acgesink function-
ality on tree structure. The maximally structured deathlsirnth model are studied
in the cases where they produce the same source-sink foalityo That is, when
the values ob; andb, in the death model equals the valuesdefandd; in the
birth model. Hence, the relocation regimes are the samegakéhe drift regimes
differ between the models. For obvious reasons, it is nasiptesto compare the
models in a situation where the drift regimes are the sambdtr models. This
would result in symmetric relocation probabilities, andglobliterate the source-
sink relation under study.

In addition, results are simulated for the same unidireetionigration regime,
but artificially neglecting the demography specific diffezes in in-deme coales-
cence rate (see section 3.50). This is intended as a regeterseparate the effects
of pure asymmetric migration from the effects of demogragbgcific drift differ-
ences. To get the clearest picture possible, deme sizestdrelse even.

The sample size is eight. For each set of values of the pripargmeters, a
deme size is chosen, so that the coalescence rate apprelyiraguals the reloca-
tion probability in the sink, when seven lineages remairhim $ink. Each of the
considered cases simulated for three modes of samplingpl@anentirely from
the sink, from the source, or evenly from both sink and saurkpart from the
expected coalescence times, the following tree statiate®btained:

Tree Depth, the time to the most recent common ancestor.
Total branch length, the sum of the length of all the braasch
External branch length, the sum of the terminal branches.
Total internal branch length, the sum of the non-termbrainches.
Last branch level, the coalescence time of the two lasglges.

e m>»A

As described in the previous chapter the values of thesistgtatunder the stan-
dard Kingman Coalescent, together with the values:fer 8 are:

E(T)=2(1—1/n) =175
E(A)=2>""'1/i =5.186

E(E) =2 =2
E()=E(A—E) =3.186
E(L)=1 =1
E(E)/E(A) =0.387
E(E)/E(T) =1.143,

(Kingman 1982),
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Simulation Results

The results are summarised in table 3.1 and 3.2. The resultbie 3.1 are for
primary parameters 0.7 and 0.3, and those in table 3.2 afeGand 0.4.

Recall that in the maximally structured setting, the in-detnalescence rate
in the sink is dependent on the birth rate only, and that tlsdescence rate in the
source is dependent on the death rate only, (see (3.13)févenee). Hence, in the
death model, the drift regime will be weaker in the sink cgpending to a larger
deme size, whereas the drift regime in the source will befaotd. In the birth
model the drift regime will be weaker in the source and urcaéfe in the sink.

The deviations from the reference case for per capita paeasm&.2 and 0.8
are rather small. Hence, the values of the per capita paeasnetust differ at least
as much as 1.4 and 0.6 if demographic differences betweeatfethes is to have a
considerable influence on tree structure.

Sampling from the source gives trivial results since sucamme will be un-
affected by migration. Hence a standard Kingman Coalese=nuilts. Interest
focuses on the sink sample that is subject to different deiimes back through
time. The expected coalescence times in the death and thenidel reflects the
history of changing drift regimes. In the death model, thst firanch levels are
longer and the last are shorter, as expected. The oppdstt isfseen for the birth
model. The relation between initial coalescence rate dodagon probability are
not the same for the death and the birth model. Recall thati¢imee sizes that
makes the coalescence rate and the relocation probalyjitsl @re not the same
for both models (see section 3.3.4). For the same relocptmabilities, the initial
coalescence rate in the sink is higher in the birth model théme death model. In
the reference case the relation between the rates equais tha birth model.

Comparing the tree statistics from the death and the birtHenpresent the
following picture: The total tree depth is much larger in thigh model. This
is because the last coalescences with the longest waitmgstitake place in the
source, where the drift regime is weakest in the birth modeie total branch
length is only slightly larger in the birth model. This imgdi that the trees in the
death model must have longer first branch levels to compefigathe longer last
branch levels in the death model.

It might be expected that longer first branch levels wouldiltés longer ex-
ternal branch length. However, both the external branchtlenand the ratios
external/total branch length, show only a slight diffeerdietween the models.
The ratio external branch length/total tree depth, howeagemuch larger in the
death model. This may result from different topologies edong with different
probabilities in the two models:

In the birth model the coalescence rate in the sink relativéhé relocation
probability is higher than in the death model (see the tabsection 3.3.4). Hence,
it is more probable that lineages will coalesce before egloa than in the death
model. If a lineage do relocate before it is involved in a esaknce, it is more
probable in the birth model that only a few lineages will jdgifater, since most of
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the lineages in the sample will have coalesced in the sinkicklesuch a lineage
will have a larger probability of coalescing as one of thé¢ lashe sample, that is,
representing an external branch in the entire length ofrée t

In conclusion, the birth model may have the same relativtifra of external
branch length as the death model, but the external branchetistributed differ-
ently in the trees. In the death model, it is more probablettiefirst branch level
are long but less probable that the external branches eféerzhck in the tree.
In the birth model, it is less probable that the first branakell@re long but more
probable that the external branches extend far back ine¢e tr

The results for sink sampling and even sampling are muck diikering only
in the first branch levels. Here the expected coalescenerisisiightly longer for
even sampling due to an effect of coalescence preclusion.

3.4 Strong Migration Approximation

As shown in section 3.3.3, the effects of a source-sink fanatity between demes,
can be described as an effect on effective population sieiomost of the pa-
rameter space, as long as the deme sizes are just modeaaggy This is because
the relocation probabilities are so large relative to theltocoalescence rate, that
the distribution of lineages among the demes is effectigtfitionary. Refer to
section 2.4.4 for a description of the strong migration timi

For the approximation to be justified relocation probalegitmust be so much
larger than the total coalescence rate, that a stationatyikdition of lineages
among demes between coalescence events can be assumedt, tHencrucial
relation isR;. /A, which must be large for all. R;. is the scaled probability of
relocating from deme, and )\, is the scaled coalescence rate faiemaining lin-
eages, calculated under the assumption of strong migrafiba reliability of the
assumption will be considered separately.

Recall that the ancestry in populations in the strong migmdimit is described
by a standard Kingman Coalescent with a migration effegimaulation size. This
implies that the ancestral relationship of sequences shfpdm a large source-
sink population is described simply by a scaling of the stadd&ingman Coales-
cent. In this section, results for this new source-sinkatiffe population sizelV,,
will be presented.

3.4.1 The Source-sink Effective Population Size

Since a standard Kingman Coalescent is assumed, so thatléiee lengths of
branch levels are known, we only need to consider the refiltsvo sequences.
The stationary distribution is binomial for two sequenced gives the probability
that! of the two lineages are located in deme one

o) = (3 )= mp (3:52)
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Reference Case:

Sampling Sink Source Even
E(8) 0.0286+ 0.0333 0.0247 0.0278 0.0414+ 0.0441
E(7) 0.0441+ 0.0441 0.033G: 0.0330 0.0534+ 0.0534
E(6) 0.0686+ 0.0704 0.0461 0.0479 0.0716t 0.0729
E(5) 0.1065+ 0.1065 0.0694: 0.0694 0.1005+ 0.1005
E(4) 0.1673+ 0.1681 0.1156t 0.1161 0.1529+ 0.1540
E(3) 0.2883+ 0.2883 0.2313: 0.2313 0.2698 0.2698
E(2) 0.7276+ 0.7277 0.6948t 0.6950 0.7149+ 0.7150
E(T) 1.4311 1.2153 1.4048
E(A) 4.4718 3.6001 4.4897
E(E) 1.8525 1.3879 2.0018
E(l) 2.6192 2.2121 2.4878
E(L) 0.7276 0.6948 0.7149
E(E)E(A) 0.4142 0.3855 0.4458
E(E)/E(T) 1.2944 1.1420 1.4249
Death Model:

Sampling Sink Source Even
E(8) 0.0373+ 0.0394 0.0198t 0.0262 0.0402+ 0.0437
E(7) 0.0535+ 0.0535 0.0264t 0.0264 0.0507 0.0507
E(6) 0.0754+ 0.0770 0.037G: 0.0404 0.0663 0.0687
E(5) 0.1051+ 0.1051 0.0555t 0.0555 0.0912+ 0.0912
E(4) 0.1516+ 0.1522 0.0926t 0.0936 0.1355+ 0.1363
E(3) 0.2479+ 0.2479 0.1848t 0.1848 0.2332+ 0.2332
E(2) 0.5972+ 0.5972 0.5551 0.5553 0.5873+ 0.5874
E(T) 1.2683 0.9716 1.2048
E(A) 4.1968 2.8798 3.9486
E(E) 1.9271 1.1110 1.8829
E(l) 2.2697 1.7688 2.0657
E(L) 0.5972 0.5551 0.5873
E(E)E(A) 0.4591 0.3857 0.4768
E(E)/E(T) 1.5194 1.1434 1.5628
Birth Model

Sampling Sink Source Even
E(8) 0.0230+ 0.0292 0.033G: 0.0363 0.0429+ 0.0465
E(7) 0.0369+ 0.0369 0.0441 0.0441 0.0584+ 0.0584
E(6) 0.0624+ 0.0647 0.0616t 0.0634 0.0813+ 0.0844
E(5) 0.1081+ 0.1081 0.0926t 0.0926 0.1178 0.1178
E(4) 0.1889+ 0.1895 0.1543t 0.1547 0.1835- 0.1842
E(3) 0.3525+ 0.3525 0.3082: 0.3082 0.3343 0.3343
E(2) 0.9500+ 0.9501 0.9257 0.9258 0.9370+ 0.9371
E(T) 1.7220 1.6197 1.7555
E(A) 5.0714 71 4.8000 5.4414
E(E) 1.8935 1.8521 2.2640
E(1) 3.1779 2.9478 3.1774
E(L) 0.9500 0.9257 0.9370



Reference Case:

Sampling Sink Source Even
E(8) 0.0254+ 0.0316 0.0206t 0.0242 0.039 0.0429
E(7) 0.0408+ 0.0408 0.0275t 0.0275 0.0496t 0.0496
E(6) 0.0640+ 0.0659 0.0385: 0.0402 0.0646t 0.0667
E(5) 0.0965+ 0.0965 0.0579 0.0579 0.0879 0.0879
E4) 0.1457+ 0.1467 0.0965t 0.0970 0.1304t 0.1315
E(3) 0.2416+ 0.2416 0.1929 0.1929 0.2258t 0.2258
E(2) 0.6054+ 0.6056 0.5792- 0.5792 0.5957 0.5958
E(T) 1.2197 1.0134 1.1939
E(A) 3.8754 3.0029 3.8836
E(E) 1.6471 1.1571 1.7824
E(l) 2.2283 1.8457 2.1012
E(L) 0.6054 0.5792 0.5957
E(E)/E(A) 0.4250 0.3853 0.4589
E(E)/E(T) 1.3503 1.1417 1.4928
Death Model

Sampling Sink Source Even
E(8) 0.0284+ 0.0312 0.0185t 0.0225 0.0388t 0.0424
E(7) 0.0442+ 0.0442 0.024# 0.0247 0.0480t 0.0480
E(6) 0.0659+ 0.0671 0.0347 0.0374 0.0616t 0.0634
E(5) 0.0948+ 0.0948 0.052G: 0.0520 0.0835t 0.0835
E(4) 0.1376+ 0.1384 0.0868t 0.0875 0.1226+ 0.1236
E(3) 0.2240+ 0.2240 0.173# 0.1737 0.209 0.2097
E(2) 0.5500+ 0.5501 0.5209: 0.5211 0.5414t 0.5415
E(T) 1.1452 0.9116 1.1058
E(A) 3.7302 2.7012 3.6372
E(E) 1.6553 1.0418 1.7168
E(l) 2.0748 1.6593 1.9203
E(L) 0.5500 0.5209 0.5414
E(E)E(A) 0.4437 0.3857 0.4720
E(E)/E(T) 1.4454 1.1428 1.5524
Birth Model

Sampling Sink Source Even
E(8) 0.0228+ 0.0261 0.0232- 0.0259 0.0406+ 0.0430
E(7) 0.0377+ 0.0377 0.0309: 0.0309 0.0519 0.0519
E(6) 0.0622+ 0.0640 0.0434: 0.0448 0.0682+ 0.0698
E(5) 0.0987+ 0.0987 0.065Gt 0.0650 0.0939+ 0.0939
E(4) 0.1546+ 0.1554 0.1086t 0.1093 0.1400+ 0.1408
E(3) 0.2636+ 0.2636 0.2166t 0.2166 0.2462+ 0.2462
E(2) 0.6755+ 0.6756 0.6498: 0.6499 0.665H 0.6653
E(T) 1.3153 1.1378 1.3063
E(A) 4.0746 72 3.3727 4.1977
E(E) 1.6565 1.3012 1.8729
E(l) 2.4181 2.0715 2.3247
E(L) 0.6755 0.6498 0.6651



where; is the probability of finding one lineage in demeor the fraction of the
time, that one lineage spends in dein&he vectorr can be can be obtained as the
left eigen vector with corresponding eigen value one, oftthekwards migration
matrix R.

1—1719 712

R = 3.53
ro1 1—179 ( )

and is given by

Tij R
= 1,2 3.54
7TJ Tij +sz J # v, € { ) }7 ( )
where
b — B,D Np — 1

1y,  (dibs = Coo(B. D))(e;Nr — 1) .55

2CiCj

pi(1) can be interpreted both as the probability of findinmeages in demé,
and the expected fraction of the time thdineages reside in deme This means
that the rate of coalescence for the two sequengesan then be calculated as:

« bods + COU(B,D) « bidy + CO’U(B, D)

A2 = p(2) 5 + p(0) 5
€ €1
bydy — Cov(B, D body — Cov(B, D

L p(1) x (Ld2=Cov(B. D) | badi = Cov(B. D)) 5 g4

2cico 2cy1c9

The source-sink effective population size is thus given by:
Nr

N, = —. 3.57
o (3.57)

In terms of the Wright-Fisher model for which effective ptation size is defined
0? = 1 and in the Moran modet? = 2/Nr. This straightforward conversion
is possible because the two models are exchangeable in itise described in
section 1.2. For reference, recall thét = N7 /o2 in a panmictic population with
isotropic strong migration and uniform drift regimes in @imes.

In figure 3.8, in units of N2 /2, is plotted as a function af'ov(B, D) and
eitherb or d as primary parameter. Note that it is effectively identicethe graphs
in figure 3.4 except for small difference in the values of thenary parameter and
large covariance. Figure 3.9 shows the differenc&/inin units ofN2/2, of both
the death and the birth model to a reference model with nd ifferences in
demography. Note that the effect of asymmetric relocatiababilities that tend
to aggregate lineages in one deme thus lowering the expeotddscence time is
included in the reference model. Hence, figure 3.9 showsthelympact, of local
demographic differences in a source-sink population, enetifective population
size. As explained in section 3.3.3, the deviation due toatgaphy differences
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Death model
1

0.75
Birth model --------
1

0.5
0.54
0.56 5
058 5%

0.6
max[b-source, d-sink]

Figure 3.8: The expected coalescence tifsig, for two sequences is plotted as a function
of covariance and the largest value of the primary parami&teboth the death and the
birth model.

are stronger in the birth model. However, the deviationsaalescence rates in
the death and the birth model are equal. The difference leetigure 3.6 and
figure 3.7 owes to the fact that these plot the inverse coathescrates, i.e. the
expected coalescence times.

Since we have a standard Kingman Coalescent in the strongtioig limit,
the relative lengths of expected coalescence times ara diyd / (’5) Hence,
knowing the coalescence rate for two sequentgghe expected coalescence time
of k is simply obtained as

BlTe oy ] =1 / Ao <’;> (3.58)

3.4.2 Robustness of the Strong Migration Approximation

For the strong migration approximation to hold the relatidn/ )\, must be large
for all i. Otherwise lineages may be “trapped” in some demes, thyemiiag the
very large number of relocation events needed, if the assomef stationarity of
the distribution of lineages among demes, is to be valid.r& iea special case,
however, where the spatial distribution is stationary beeahe lineages spend all
their time inone deme, as in the case of nearly maximal structuring. In thée ca
the approximation may be valid even though the probabilityemcation from the
source to the sink is nearly zero, because such an event wonlddiately result
in a relocation back into the source. Hence, the lineages@ré&rapped” in the
sink.

In figure 3.10 and 3.11 the effect of assuming a stationaryiloligion of lin-
eages is shown. The results generated under the statioistijpution under the
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The graphs show the deviation 8f, in a model with no local demography differences,

from that in the death model (top) and the birth model (bojtaw = 100



strong migration approximation are compared to the examili® obtained from
(3.47), (3.48) and (3.49). This gives an impression of theapa&ter space cov-
ered by the approximation. The results shown is for two secge The peaks
in the graphs for even and sink sampling are due to the fatthlaexact results
cover relocation waiting time, whereas the approximatiorsdnot. The holes in
the graphs for source sampling, are due to the fact that {i@ximation does not
take into account the effect of early coalescences thaislfrom a low relocation
probability out of the source. The edges of the graph foramesampling are zero
(the approximation is exact). This is because both a maxaoriance and no
difference in primary parameter values among demes camesio no relocations
out of the source. Hence, both cases corresponds to a stgtidistribution of

lineages where the lineages are only located in the source.

The figure 3.10 and 3.11 only shows the reliability of the agpnation in
the case of two sequences. As the number of sequences sangoiethe same
deme grows, initial coalescence rate will grow quadratielyere as the relocation
probability will only grow linearly. The accuracy of the apgimation relies on the
relation R;../\;.. Hence, if the sample size is ten, and sampling is from onesgdem
the coalescence rate will initially &0 — 1) /4 = 45 times that for two sequences,
whereas the relocation probability will only the be five terlarger than the case
for two sequences. This implies that if the approximatiotibe as good as in
figure 3.10 and 3.11 the deme sizes would have t56 = 9 times as large, that
is N = 900.
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Chapter 4

Discussion

This chapter is divided into three parts. The first part isseassion of the model
presented in chapter 3. The next part is discussion of tloenrdtion in the back-
wards migration matrix, and the last part is a discussioroofesgeneral problems
in retrospective population genetic analysis.

4.1 Structured Moran Model

In retrospective genetic analysis it is crucial to distiisgubetween the parameters
that can at most be obtained from a data set, and what can entpdxrulation
as to how these parameters are produced. The only inform#iit evolution
leaves behind in the sequences, that may be sampled at {ptiesenis the drift
regime in each deme and the backward migration matrix. lispossible to
distinguish actual deme sizes from other factors influengenetic drift, such as
demography. Hence, the population size obtained from data effective popula-
tion size. This implies that the maximal resolution of imf@tion is given by the
vectorc = {c;...cp} of scaled deme sizes, and the scaled relocation probabil-
ities, N.r;;, composing the backwards migration matrix. Each deme sinebe
estimated as; NV, but may hide all sorts of effects producing local drift difaces.
E.g. it is not possible to distinguish a source-sink fun@idy among even-sized
demes, from a situation of plain asymmetric migration aritedint deme sizes.
This composite nature of the effective deme sizes and eféepbpulation size,
leaves a lot of space for interpretation. Hence, an undwiistg of the extent to
which different effects may influence the deme sizes obdthirem data, is of great
value.

The Wright-Fisher model describes the backwards migrgtioness and deme
sizes down to these composite parameters, and is thus iwiihevhat can max-
imally be obtained from data. Hence, if the relationshipsveen effects, that
may together produce effective deme sizes, is to be inaetiy a more detailed
description must be used.
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41.1 Model

The Moran model formulated in chapter 3 describes the ogisltiip between de-
mographic effects, deme sizes and relocation probakilitiea population com-
posed of a source and a sink that through migration upholdsqganibrium of
deme sizes. This is done by expressing the coalescencearateslocation prob-
abilities as functions of birth and death rate in each deheecbvariance of birth
and death events, the fractional sizes of demes, and thetgalation size.

The model assumes that the asymmetry of migration is a dicertequence of
the demographic differences. This implies that the resldts/ed in chapter 3 only
applies to populations where a perfect distribution of kigpndividuals among
sinks is the case. The model may in principle describe gamieation and hap-
loid individual migration equally well, if it is assumed thiaoth gametes and in-
dividuals disperse/migrate so that all demes may be reacstl migration on
average will compensate for the difference in productivi{g example is gametes
that move around among demes until a free space is foundtte set This free
space is found with a higher probability in a sink. Howevexssive dispersal of
gametes will rarely conform to these assumptions. It is muchne likely to be
the case for individual migration, where an evaluation dfite quality may be
possible.

In the structured Moran model each relocation probabibtyoially resolved
into the parameters, d, ¢, Cov(B, D) and Ny. This means that there is no de-
grees of freedom left in the relocation probabilities thah be used to make the
backwards migration matrix reflect features of non-absigaographical structure
(that relocations between demes farther apart are lesalpiegb This is possible in
the W-F model since the relocation rates here are not coetplexplained.

4.1.2 Results

In the model presented here, the actual deme size, and titi®madddemographic
effects due to local demography differences are separabeci sense that their
individual effects may be investigated. However, the eleimeescribed in the
model can not be separated through data analysis. The molgedarve to add to
an understanding of the effects of demography in sourde+siodel on effective
deme sizes.

By an analytic approach it was found that the situations etar effect of
demography may be seen, can be described by the strong iongaaiproximation
as long as deme sizes are moderately large. In section 3.dethation of the
effective population size arising from local drift differees due to demography was
assessed. The cases investigated assume equal demdrsizcistarest focuses on
the effects of demography differences and not those ofrdiftedeme sizes. Hence,
the death model implies even per capita death parametedsthanbirth model
implies even per capita birth parameters. The deviationsffective population
size between the death and the birth model is almost 30% gicdke where the
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per capita over/underproduction is 0.4. In other words, r@tiee source deme
produces 40% of the lineages in the sink deme. This is weliiwithe limits of
biological realism, and more extreme source-sink relatigrs are not improbable.
The deviation, from the reference model with no drift difece in the demes, is in
this case almost 20% for the birth model, almost 10% for tlagldmodel. Hence,
the effective population size may be greatly influenced byaigraphy. For larger
differences in the values of per capita parameters, therdiiice in effect onv,
of the death and the birth model, will be even more pronoundedte that the
situation where a small part of the population may be resptafor the survival
of the entire population does not necessarily result in dlsnmeffective population
size, as one may think at first.

Through simulations it was concluded that local differenge demography
may influence not only total effective population size, Hgbahe effective deme
sizes. That is, not onlIy, but alsoc = {¢; ...cp}. However, this will only be
the case for very small deme size$ (< 20), and for a pronounced source-sink
relationship between demes (per capita parameterst and< 0.6).

4.2 Inference from The Backward Migration
Matrix

The backward migration matrix is a description of the geneffect of migration.
Each entry is given by

Tij = 7 (41)

wherer;; is the relocation probability fromto j andm; is the forward migration
probability fromj to i. ¢; refers to the fraction oy, that is, to the actual number
of individuals in deme&. The denominator in (4.1) equals the fraction size of deme
1, after the migration event, andefore a possible regulation of deme size. This
after migration fraction size is denotefl

By the simple rescaling applied section 2.1.3 to obtain ¢fecation rates from
the migration rates it was assumed that the denominator2y, (4, equals;. This
corresponds to assuming that, each migration event doethantie the deme sizes.
This, however, can not generally be assumed. In a WrigtitefFisnodel of finite
size, migration will change the deme sizes at least to soitemexn the structured
Moran model presented here, however, migration events doeshange deme
sizes.

To obtain the forward migration matrix from the backwards @re would have
to solve a system of linear equations for each entry in thedod migration matrix:
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(4.2)

This is not possible unless two things can be assumed: fiadta round of migra-
tion does not change the deme sizes, sodhat c; for all j. This this only the case
if migration is conservative or, as in the structured Morawde, if the continuous
in or out-flux from a deme precisely chancels out with the dhosate of the deme.
Second, that the/ in (4.2) refer to actual deme sizes and not effective denmessiz
Hence, the fact that the deme sizes obtained from data adieff deme sizes, that
contain all the un-separable factors that determine driétddition to deme size,
makes it impossible to convert a backward matrix to a forwaadirix, unless it can
be assumed that each deme is panmictic (In which ¢a$e= c; N7).

In conclusion, the only the genetic effect of migration,agivby the backwards
migration matrix, can be obtained from a data set. Any furthterpretation in
terms forward migration is highly inadvisable.

4.3 General Problems in Retrospective
Population Genetic Analysis.

The problems concerning the resolution of information thay be obtained from a
data set, described in the beginning of the chapter, is adfypeblems that can not
be circumvented. A second type of problems in retrospeginymulation genetics
are the problems pertaining to the validity of the null-htfyasis, that inferences
are based on. If we are to make inferences on the populatioctste, we have to
be able to assume that the effects seen in data owe to stngcaurd not to other
effects. In other words, we must ensure ourselves to theeptssible, whether:
(1) the size of the population or and relative sizes of the detmeay be subdivided
into have not changed in the evolutionary time perspectivie Coalescent,()
the backwards migration matrix of a possible structure & pgbpulation has not
changed in this time perspective eithar )(the sequences considered have not
been subject to effects of selection in the time perspedtvbe Coalescent, and
(1v) the sequences are not subject to recombination.

These premises are difficult to establish, and ecologicakations are of
little help since these can only describe features of thegmtepopulation, and not
the past under study in a Coalescent framework. If such ahyplbthesis can not
be established with at least some degree of certainty,enées from data are of
little value, since the population features listed above praduce effects on the
Coalescent that obliterate inferences on structure.

Below, some effects that may cause erroneous inferencemt ifaken into
account, are described in brief.
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4.3.1 Non-Constant Deme Sizes and Backwards Migration Maix

If we assume that the backwards migration matrix is condtangiugh time, we
must also assume that the forward migration matrix and tlagve sizes of demes
that determine the backwards migration matrix are congtanime, see (4.1).
However, changing species composition and variations aldéststers or climatic
fluctuations, may change the quality of the demes, and alotigtins, the demo-
graphic regimes in the demes. It is not unreasonable to expatthe forward
migration matrix will change in accordance with demograpdayd if this is the
case so will the backward migration matrix.

If the quality of a deme may vary over time, so will the numbgimdividuals
it may sustain. Hence, for the same reasons as for the fomvigm@tion rate, deme
sizes may also change through time. These changes in popudatd deme sizes
may not be possible to detect.

If the forward migration matrix or the relative sizes of denchange drastically
through time, inferences on structure is not possible. Hewg may be assumed
that these stay the same while only the total populationdizemge. This may be
the case if an area has been colonised or exposed to a ddiasit@shing the deme
size so that the sizes of all demes grow exponentially duhiagperiod of time that
the sample find its common ancestor. As the deme size decbeakevards in
time, the coalescence rate will increase along with it. Iraamictic population
this will result in shorter trees with long terminal branshand a high intensity of
coalescences before the root of the tree (Slatkin & Huds®i)19

In structured populations this effect may confuse infeesman structure, since
the prolonging effect of coalescence preclusion on theldemtch levels may to
some extent cancel out with the shortening effect of expialegrowth.

4.3.2 Recombination

If intra-genic recombination occurs, different parts okegsence will have differ-
ent genealogical histories. Each genealogy representisatéon of a stochastic
process and is associated with a large variance. Hencenb@timg sequences
will yield parameter estimates with a smaller variance than-recombining se-
guences.

The problems arise when sequences that are assumed nobiobiae actu-
ally do so. neglecting the effect of recombination will institase produce trees
that superficially resemble those for exponential growith{&up & Hein 2000).
These trees with long terminal branches will result becabs#fling parts of the
sequences will make the distances between sequences nkererasulting in a
more star-like genealogy. The two forces may be distingudshy Tajima’sD
comparing the number of pairwise differences to the numbsegregating sites:

_ I1- S/a,
VVar( - S/ay,)’

(4.3)
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wherea,, = >~ ,(1/i). The mean ofD is independent of recombination but will
give negative values in the case of exponential growth.

The implications for a structured population are difficolimagine. However,
the effects of recombination must be expected to obscureftbets of structure.

4.3.3 Migration and Historical Association

If a population at some time in the past was divided into twmes, it is difficult to
distinguish two situations: First, a situation where the tlemes diverged a long
time ago but where migration have occured between them #iece and second,
a situation where the two demes diverged recently but hase ietually isolated
from each other since then. For a range of relocation ratesd&ergence times,
the mean number of pairwise differences, both for sampingne deme and in
two demes, is the same for the two settings. However, tharnvees of pairwise
differences show a somewhat different dependence on telogarobability and
divergence time This implies that sets of relocation prdtigs and divergence
times that produce the same mean pairwise differences maggdagated by vari-
ances of pairwise differences (Wakeley 1996).

4.4 Conclusion

An introduction to the Coalescent and the structured Coatdgshave been given.
Further, the effects of a source-sink functionality on tle@alEéscent has been de-
scribed. This was done in a Moran model by expressing alsiian probabilities
of the structured Coalescent, in terms of the birth and ded#s given by the de-
mographic regimes in each deme. The effects of a sourcefgimdtionality on
tree structure in small demes is described, and a resulhéosdurce-sink effective
population size has been given.

The Coalescent is a powerful tool in population geneticsis kimple, and
describes the ancestral relationship of the sampled segsert must, however,
be used with caution. As discussed above, it is difficult tatedsh whether the
assumptions, that inference on the sequence sample is tiasactually hold. Ef-
fects such as non-constant migration regimes, non-candéame sizes, historical
association, recombination and selection, will obscuedriformation on structure
in the sample, if not taken into account. Hence, even thotrgbtsired populations
are best described by the structured Coalescent, addifaas such as the above
may obliterate the possibility of inference.
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