Hidden Markov Models

Implementing the forward-, backward- and Viterbi-algorithms

Christian Nørgaard Storm Pedersen
cstorm@birc.au.dk

Viterbi

Recursion: $\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis: $\omega\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)$

Forward

Recursion: $\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis: $\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)$

Backward

Recursion: $\beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right)$
Basis: $\beta\left(\mathbf{z}_{N}\right)=1$

Problem: The values in the ω-, α-, and β-tables can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points and get underflow

Forward

Recursion: $\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis: $\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)$

Backward

Recursion: $\beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right)$
Basis: $\beta\left(\mathbf{z}_{N}\right)=1$

The Viterbi algorithm

$\omega\left(\mathbf{z}_{n}\right)$ is the probability of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ending in \mathbf{z}_{n} generating the observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

$$
\omega\left(\mathbf{z}_{n}\right) \equiv \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)
$$

Recursion:

$$
\omega[k][n]=\omega\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

$\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis:

$$
\omega\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

Computing ω takes time $\mathbf{O}\left(\mathbf{K}^{2} \mathbf{N}\right)$ and space $O(K N)$ using memorization

1e Viterbi algorithm

ity of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ing the observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

Solution to underflow-problem: Because $\log \max f=\max \log \mathrm{f}$, we can "log-transform" which turns multiplications into additions and thus avoids too small values

$$
\omega[k][n]=\omega\left(z_{n}\right) \text { it } z_{n} \text { Is state } k
$$

$$
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

Basis:

$$
\omega\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

The Viterbi algorithm in "log-space"

$\omega\left(\mathbf{z}_{n}\right)$ is the probability of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ending in \mathbf{z}_{n} generating the observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

$$
\begin{aligned}
\log \omega\left(\mathbf{z}_{n}\right) & =\log \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right) \\
& =\log \left(p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right) \\
& =\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\log \left(\max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right) \\
& =\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}} \log \left(\omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right) \\
& =\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\log \omega\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)
\end{aligned}
$$

Recursion: $\hat{\omega}\left(\mathbf{z}_{n}\right)=\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\hat{\omega}\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)$
Basis:

$$
\hat{\omega}\left(\mathbf{z}_{1}\right)=\log \left(p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)\right)=\log p\left(\mathbf{z}_{1}\right)+\log p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

The Viterbi algorithm in "log-space"

$\omega\left(\mathbf{z}_{n}\right)$ is the probability of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ending in \mathbf{z}_{n} generating the observations $\omega^{\wedge}[k][n]=\omega^{\wedge}\left(\boldsymbol{z}_{n}\right)$ if \boldsymbol{z}_{n} is state k

$$
\begin{aligned}
\log \omega\left(\mathbf{z}_{n}\right) & =\log \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots\right. \\
& =\log \left(p (\mathbf { x } _ { n } | \mathbf { z } _ { n }) \operatorname { m a x } _ { \mathbf { z } _ { n - 1 } } \omega (\mathbf { z } _ { n - 1 }) p \left(\mathbf{z}_{n} \mid\right.\right. \\
& =\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\log \left(\operatorname { m a x } _ { \mathbf { z } _ { n - 1 } } \omega \left(\mathbf{z}_{n-1}\right.\right. \\
& =\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}} \log \left(\omega \left(\mathbf{z}_{n-1}\right.\right. \\
& =\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\log \omega\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)
\end{aligned}
$$

Recursion: $\hat{\omega}\left(\mathbf{z}_{n}\right)=\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\hat{\omega}\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)$
Basis:

$$
\hat{\omega}\left(\mathbf{z}_{1}\right)=\log \left(p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)\right)=\log p\left(\mathbf{z}_{1}\right)+\log p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

The Viterbi algorithm in "log-space"

$$
\begin{gathered}
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \\
\hat{\omega}\left(\mathbf{z}_{n}\right)=\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\hat{\omega}\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)
\end{gathered}
$$

What if $p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)$ or $p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$ is 0 ? Then the product of probabilities becomes 0 , but what should it be with log-transform?

The Viterbi algorithm in "log-space"

$$
\begin{gathered}
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \\
\hat{\omega}\left(\mathbf{z}_{n}\right)=\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\hat{\omega}\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)
\end{gathered}
$$

What if $p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)$ or $p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$ is 0 ? Then the product of probabilities becomes 0 , but what should it be with log-transform?
"log 0 " should be some representation of "minus infinity"

```
// Pseudo code for computing }\mp@subsup{\omega}{}{\wedge}[k][n]\mathrm{ for some n>1
\omega}\mp@subsup{\omega}{}{\wedge}[k][n]="minus infinity
for j = 1 to K:
    \mp@subsup{\omega}{}{\wedge}[k][n]= max( }\mp@subsup{\omega}{}{\wedge}[k][n],\operatorname{log}(p(x[n]|k))+\mp@subsup{\omega}{}{\wedge}[j][n-1]+\operatorname{log}(p(k|j))
```


The Viterbi algorithm in "log-space"

$$
\begin{gathered}
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \\
\hat{\omega}\left(\mathbf{z}_{n}\right)=\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\hat{\omega}\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)
\end{gathered}
$$

Still takes time $O\left(K^{2} N\right)$ and space $\mathbf{O}(K N)$ using memorization, and the most likely sequence of states can be found be backtracking

```
// Pseudo code for computing }\mp@subsup{\omega}{}{\wedge}[k][n] for some n>1
\omega^[k][n] = "minus infinity"
for j=1 to K:
    \mp@subsup{\omega}{}{\wedge}[k][n]= max( }\mp@subsup{\omega}{}{\wedge}[k][n],\operatorname{log}(p(x[n]|k))+\mp@subsup{\omega}{}{\wedge}[j][n-1]+\operatorname{log}(p(k|j))
```


Backtracking

Pseudocode for backtracking not using log-space:

```
z[1..N] = undef
z[N] = arg max }\mp@subsup{\operatorname{ma}}{k}{}\omega[k][N
for n=N-1 to 1:
    z[n] = arg max 
print z[1..N]
```

Pseudocode for backtracking using log-space:

```
z[1..N] = undef
z[N]=\operatorname{arg max}}\mp@subsup{}{k}{}\mp@subsup{\omega}{}{\wedge}[k][N
for n=N-1 to 1:
    z[n]= arg max 
print z[1..N]
```

Takes time $O(N K)$ but requires the entire ω - or ω^{\wedge}-table in memory

Why "log-space" helps

A floating point number n is represented as $n=f^{*} 2^{e}$ cf. the IEEE-754 standard which specify the range of f and e

(a)

(b)

Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess t27	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2^{-126}	2^{-1022}
Largest normalized number	approx. 2^{128}	approx. 2^{1024}
Decimal range	approx. 10^{-38}	to 10^{38}
Smallest denormalized number	approx. 10^{-308} to 10^{308}	

Figure B-5. Characteristics of IEEE flioating-point numbers.

See e.g. Appendix B in Tanenbaum's Structured Computer Organization for further details.

Why "log-space" helps

The Viterbi-recursion for the HMM below yields:

$$
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \omega\left(\mathbf{z}_{n-1}\right)=1 \cdot \frac{1}{2} \cdot \omega\left(\mathbf{z}_{n-1}\right)=\left(\frac{1}{2}\right)^{n}=2^{-n}
$$

Why "log-space" helps

The Viterbi-recursion for the HMM below yields:

$$
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \omega\left(\mathbf{z}_{n-1}\right)=1 \cdot \frac{1}{2} \cdot \omega\left(\mathbf{z}_{n-1}\right)=\left(\frac{1}{2}\right)^{n}=2^{-n}
$$

If $n>467$ then 2^{-n} is smaller than 10^{-324}, i.e. cannot be represented

Why "log-space" helps

The Viterbi-recursion for the HMM below yields:

$$
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \omega\left(\mathbf{z}_{n-1}\right)=1 \cdot \frac{1}{2} \cdot \omega\left(\mathbf{z}_{n-1}\right)=\left(\frac{1}{2}\right)^{n}=2^{-n}
$$

If $n>467$ then 2^{-n} is smaller than 10^{-324}, i.e. cannot be represented

The log-transformed Viterbi-recursion for the HMM below yields:

$$
\begin{align*}
\hat{\omega}\left(\mathbf{z}_{n}\right) & =\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)+\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\hat{\omega}\left(\mathbf{z}_{n-1}\right) \\
& =\log 1+\log \frac{1}{2}+\hat{\omega}\left(\mathbf{z}_{n-1}\right) \tag{1}\\
& =-1+\hat{\omega}\left(\mathbf{z}_{n-1}\right) \\
& =-n
\end{align*}
$$

No problem, as the decimal range is approx -10^{308} to 10^{308}

A simple HMM

The forward algorithm

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

Recursion:

$$
\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

Basis:

$$
\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

$\alpha[k][n]=\alpha\left(\boldsymbol{z}_{n}\right)$ if \boldsymbol{z}_{n} is state k
Takes time $O\left(K^{2} N\right)$ and space $O(K N)$ using memorization

1
n
k

The forward algorithm

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}
Solution to underflow-problem: Since $\log (\boldsymbol{\Sigma}) \neq \boldsymbol{\Sigma}(\log \mathbf{f})$, we cannot (immediately) use the log-transform trick.

Recursion:
$\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$

Basis:

$$
\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

$$
\alpha[k][n]=\alpha\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

Takes time $O\left(K^{2} N\right)$ and space $O(K N)$ using memorization

$$
1 \quad n
$$

The forward algorithm

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}
Solution to underflow-problem: Since $\log (\boldsymbol{\Sigma}) \neq \boldsymbol{\Sigma}(\log \mathbf{f})$, we cannot (immediately) use the log-transform trick.

We instead use scaling such that values do not (all) become too small

$$
\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

Basis:

$$
\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

$$
\alpha[k][n]=\alpha\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

Takes time $O\left(K^{2} N\right)$ and space $O(K N)$ using memorization

Forward algorithm using scaled values

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)
$$

$$
\hat{\alpha}\left(\mathbf{z}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{\alpha\left(\mathbf{z}_{n}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}=\frac{\alpha\left(\mathbf{z}_{n}\right)}{\prod_{m=1}^{n} c_{m}}
$$

$$
c_{m}=p\left(\mathbf{x}_{m} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{m-1}\right) \quad p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\prod_{m=1}^{n} c_{m}
$$

Forward algorithm using scaled values

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right) p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)
$$

$$
\begin{aligned}
& \hat{\alpha}\left(\mathbf{z}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\frac{\alpha\left(\mathbf{z}_{n}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}=\frac{\alpha\left(\mathbf{z}_{n}\right)}{\prod_{m=1}^{n} c_{m}} \\
& c_{m}=p\left(\mathbf{x}_{m} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{m-1}\right) \quad p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)=\prod_{m=1}^{n} c_{m}
\end{aligned}
$$

This "normalized version" of $\alpha\left(\mathbf{z}_{n}\right), \alpha^{\wedge}\left(\mathbf{z}_{n}\right)$, is a probability distribution over K outcomes. We expect it to "behave numerically well" because

$$
\sum_{k=1}^{K} \hat{\alpha}\left(z_{n k}\right)=1
$$

The normalized values can not all become arbitrary small

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

$$
\begin{aligned}
\alpha\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \Leftrightarrow \\
\left(\prod_{m=1}^{n} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}}\left(\prod_{m=1}^{n-1} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \Leftrightarrow \\
c_{n} \hat{\alpha}\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
\end{aligned}
$$

$$
\alpha\left(\mathbf{z}_{n}\right)=\left(\prod_{m=1}^{n} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n}\right)
$$

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

$$
\begin{aligned}
\alpha\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \Leftrightarrow \\
\left(\prod_{m=1}^{n} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}}\left(\prod_{m=1}^{n-1} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \Leftrightarrow \\
c_{n} \hat{\alpha}\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
\end{aligned}
$$

If we know c_{n} then we have a recursion using the normalized values

$$
c_{n}=p\left(\mathbf{x}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right)
$$

$$
\alpha\left(\mathbf{z}_{n}\right)=\left(\prod_{m=1}^{n} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n}\right)
$$

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values

$$
\begin{aligned}
\alpha\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \Leftrightarrow \\
\left(\prod_{m=1}^{n} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}}\left(\prod_{m=1}^{n-1} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \Leftrightarrow \\
c_{n} \hat{\alpha}\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
\end{aligned}
$$

If we know c_{n} then we have a recursion using the normalized values

$$
\sum_{k=1}^{K} c_{n} \hat{\alpha}\left(z_{n k}\right)=c_{n} \sum_{k=1}^{K} \hat{\alpha}\left(z_{n k}\right)=c_{n} \cdot 1
$$

$$
c_{n}=p\left(\mathbf{x}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right)
$$

$$
\alpha\left(\mathbf{z}_{n}\right)=\left(\prod_{m=1}^{n} c_{m}\right) \hat{\alpha}\left(\mathbf{z}_{n}\right)
$$

Forward algorithm using scaled values

We can modify the forward-recursion to use scaled values
Recursion:
In step n compute and store temporarily the K values $\delta\left(z_{n 1}\right), \ldots, \delta\left(z_{n k}\right)$

$$
\delta\left(\mathbf{z}_{n}\right)=c_{n} \hat{\alpha}\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

Compute and store c_{n} as

$$
\sum_{k=1}^{K} \delta\left(z_{n k}\right)=\sum_{k=1}^{K} c_{n} \hat{\alpha}\left(z_{n k}\right)=c_{n} \sum_{k=1}^{K} \hat{\alpha}\left(z_{n k}\right)=c_{n}
$$

Compute and store $\hat{\alpha}\left(z_{n k}\right)=\delta\left(z_{n k}\right) / c_{n}$

Forward algorithm usi

 $\alpha^{\wedge}[k][n]=\alpha^{\wedge}\left(\boldsymbol{z}_{n}\right)$ if \boldsymbol{z}_{n} is state kWe can modify the forward-recursion to । k
Recursion:
In step n compute and store temporaril

$$
\delta\left(\mathbf{z}_{n}\right)=c_{n} \hat{\alpha}\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

Compute and store c_{n} as

$$
\sum_{k=1}^{K} \delta\left(z_{n k}\right)=\sum_{k=1}^{K} c_{n} \hat{\alpha}\left(z_{n k}\right)=c_{n} \sum_{k=1}^{K} \hat{\alpha}\left(z_{n k}\right)=c_{n}
$$

Compute and store $\hat{\alpha}\left(z_{n k}\right)=\delta\left(z_{n k}\right) / c_{n}$
Basis:
$\hat{\alpha}\left(\mathbf{z}_{1}\right)=\frac{\alpha\left(\mathbf{z}_{1}\right)}{c_{1}} \quad c_{1}=p\left(\mathbf{x}_{1}\right)=\sum_{\mathbf{z}_{1}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)=\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x}_{1} \mid \phi_{k}\right)$

Forward algorithm usi

 $\alpha^{\wedge}[k][n]=\alpha^{\wedge}\left(z_{n}\right)$ if z_{n} is state kWe can modify the forward-recursion to I
Recursion:
In step n compute and store temporaril

$$
\delta\left(\mathbf{z}_{n}\right)=c_{n} \hat{\alpha}\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

Compute and store c_{n} as

$$
\sum_{k=1}^{K} \delta\left(z_{n k}\right)=\sum_{k=1}^{K} c_{n} \hat{\alpha}\left(z_{n k}\right)=c_{n} \sum_{k=1}^{K} \hat{\alpha}\left(z_{n k}\right)=c_{n}
$$

Compute and store $\hat{\alpha}\left(z_{n k}\right)=\delta\left(z_{n k}\right) / c_{n}$
Takes time $\mathrm{O}\left(K^{2} N\right)$ and space $\mathrm{O}(K N)$ using memorization
Basis:

$$
\hat{\alpha}\left(\mathbf{z}_{1}\right)=\frac{\alpha\left(\mathbf{z}_{1}\right)}{c_{1}} \quad c_{1}=p\left(\mathbf{x}_{1}\right)=\sum_{\mathbf{z}_{1}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)=\sum_{k=1}^{K} \pi_{k} p\left(\mathbf{x}_{1} \mid \phi_{k}\right)
$$

The Backward Algorithm

$\beta\left(\mathbf{z}_{n}\right)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$ assuming being in state \mathbf{z}_{n}
$\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)$
Recursion:

$\beta\left(\mathbf{z}_{N}\right)=1$

Takes time $O\left(K^{2} N\right)$ and space $O(K N)$ using memorization

Backward algorithm using scaled values

$$
\hat{\beta}\left(\mathbf{z}_{n}\right)=\frac{\beta\left(\mathbf{z}_{n}\right)}{\prod_{m=n+1}^{N} c_{m}}=\frac{p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)}{p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}
$$

We can modify the backward-recursion to use scaled values

$$
\begin{aligned}
\beta\left(\mathbf{z}_{n}\right) & =\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \Leftrightarrow \\
\left(\prod_{m=n+1}^{N} c_{m}\right) \hat{\beta}\left(\mathbf{z}_{n}\right) & =\sum_{\mathbf{z}_{n+1}}\left(\prod_{m=n+2}^{N} c_{m}\right) \hat{\beta}\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \Leftrightarrow \\
c_{n+1} \hat{\beta}\left(\mathbf{z}_{n}\right) & =\sum_{\mathbf{z}_{n+1}} \hat{\beta}\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right)
\end{aligned}
$$

Backward algorithm using scaled values

We can modify the backward-recursion to use scaled values
Recursion:
In step n compute and store temporarily the K values $\varepsilon\left(Z_{n 1}\right), \ldots, \varepsilon\left(Z_{n K}\right)$

$$
\epsilon\left(\mathbf{z}_{n}\right)=c_{n+1} \hat{\beta}\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \hat{\beta}\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right)
$$

Using c_{n+1} computed during the forward-recursion, compute and store

$$
\hat{\beta}\left(z_{n k}\right)=\epsilon\left(z_{n k}\right) / c_{n+1}
$$

Basis:
$\hat{\beta}\left(\mathbf{z}_{N}\right)=1$
Takes time $\mathrm{O}\left(K^{2} N\right)$ and space $\mathrm{O}(K N)$ using memorization

$$
\beta^{\wedge}[k][n]=\beta^{\wedge}\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

Posterior decoding - Revisited

Given \mathbf{X}, find \mathbf{Z}^{*}, where $\mathbf{z}_{n}^{*}=\arg \max p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ is the most likely state to be in the n 'th step.

$$
\begin{aligned}
p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) & =\frac{p\left(\mathbf{z}_{n}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)} \\
& =\frac{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)} \\
& =\frac{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)} \\
& =\frac{\alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right)}{p(\mathbf{X})}
\end{aligned}
$$

$$
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\arg \max _{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) / p(\mathbf{X})
$$

Posterior decoding - Revisited

Given \mathbf{X}, find \mathbf{Z}^{*}, where $\mathbf{z}_{n}^{*}=\arg \max p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ is the most likely state to be in the n 'th step.

$$
\begin{aligned}
p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) & =\frac{\alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right)}{p(\mathbf{X})} \\
& =\frac{\hat{\alpha}\left(\mathbf{z}_{n}\right)\left(\prod_{m=1}^{n} c_{m}\right) \hat{\beta}\left(\mathbf{z}_{n}\right)\left(\prod_{m=n+1}^{N} c_{m}\right)}{\left(\prod_{m=1}^{N} c_{m}\right)} \\
& =\hat{\alpha}\left(\mathbf{z}_{n}\right) \hat{\beta}\left(\mathbf{z}_{n}\right)
\end{aligned}
$$

$$
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\arg \max _{\mathbf{z}_{n}} \hat{\alpha}\left(\mathbf{z}_{n}\right) \hat{\beta}\left(\mathbf{z}_{n}\right)
$$

Summary

- Implementing the Viterbi- and Posterior decoding in a "numerically" sound manner.
- Next: How to "build" an HMM, i.e. determining the number of observables (D), the number of hidden states (K) and the transition- and emission-probabilities.

Speeding up Viterbi decoding?

Recall: The Viterbi algorithm

$$
\begin{gathered}
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \\
\hat{\omega}\left(\mathbf{z}_{n}\right)=\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\hat{\omega}\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)
\end{gathered}
$$

Takes time $\mathbf{O}\left(K^{2} N\right)$ and space $\mathbf{O}(K N)$ using memorization, and the most likely sequence of states can be found be backtracking

```
// Pseudo code for computing }\mp@subsup{\omega}{}{\wedge}[k][n] for some n>1
\omega^[k][n] = "minus infinity"
for j=1 to K:
    \mp@subsup{\omega}{}{\wedge}[k][n]= max( }\mp@subsup{\omega}{}{\wedge}[k][n],\operatorname{log}(p(x[n]|k))+\mp@subsup{\omega}{}{\wedge}[j][n-1]+\operatorname{log}(p(k|j))
```


Recall: The Viterbi algorithm

$$
\begin{gathered}
\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1} p_{p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)}\right. \\
\hat{\omega}\left(\mathbf{z}_{n}\right)=\log p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right)+\max _{\mathbf{z}_{n-1}}\left(\hat{\omega}\left(\mathbf{z}_{n-1}\right)+\log p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)\right)
\end{gathered}
$$

Takes time $\mathbf{O}\left(\mathbf{K}^{2} N\right)$ and space $\mathbf{O}(K N)$ using memorization, and the most likely sequence of states can be found be backtracking

```
// Pseudo code for computing }\mp@subsup{\omega}{}{\wedge}[k][n] for some n>1
\omega^[k][n] = "minus infinity"
for j = 1 to K:
    \mp@subsup{\omega}{}{\wedge}[k][n]= max( }\mp@subsup{\omega}{}{\wedge}[k][n],\operatorname{log}(p(x[n]|k))+\mp@subsup{\omega}{}{\wedge}[j][n-1]+\operatorname{log}(p(k|j))
```


Recall: The Viterbi algorithm

```
// Pseudo code for computing }\mp@subsup{\omega}{}{\wedge}[k][n] for some n>1
\omega}\mp@subsup{|}{}{\wedge}[k][n]="minus infinity
for j=1 to K:
    \mp@subsup{\omega}{}{\wedge}[k][n]= max( }\mp@subsup{\omega}{}{\wedge}[k][n],\operatorname{log}(p(x[n]|k))+\mp@subsup{\omega}{}{\wedge}[j][n-1]+\operatorname{log}(p(k|j))
```

$/ /$ Modified pseudo code for computing $\omega^{\wedge}[k][n]$ for some $n>1$
$\omega^{\wedge}[k][n]=$ "minus infinity"
if $\log (p(\mathrm{x}[n] \mid k))!=$ "minus infinity" then
for $j=1$ to K :
if $\log (p(k \mid j))$!= "minus infinity" then
$\omega^{\wedge}[k][n]=\max \left(\omega^{\wedge}[k][n], \log (p(x[n] \mid k))+\omega^{\wedge}[j][n-1]+\log (p(k \mid j))\right)$

Still takes time $\mathbf{O}\left(K^{2} N\right)$ and space $\mathbf{O}(K N)$ using memorization, but we might avoid some costly table lookups. What if we could avoid considering predecessors (j), where $p(k \mid j)==0$?

Organizing transition probabilities

The transition matrix, A , is an incidence matrix, where $p(k \mid j)=\mathrm{A}_{j k}$ is the weight of the edge from state j to state k in the transition diagram.

Idea: If we keep track of the transition diagram using adjacency lists, i.e. $\operatorname{Adj}[k]=\left[\left(\boldsymbol{j}, \mathbf{A}_{j k}\right)\right.$ for all states j where $p(k \mid j)!=0]$, then we can write:

$$
\begin{aligned}
& \text { // Modified pseudo code for computing } \omega^{\wedge}[k][n] \text { for some } n>1 \\
& \omega^{\wedge}[k][n]=\text { "minus infinity" } \\
& \text { if } \log (p(x[n] \mid k))!=\text { "minus infinity" then } \\
& \quad \text { for } j \text { in Adj }[k] \text { : } \\
& \quad \omega^{\wedge}[k][n]=\max \left(\omega^{\wedge}[k][n], \log (p(x[n] \mid k))+\omega^{\wedge}[j][n-1]+\log (p(k \mid j))\right)
\end{aligned}
$$

Now takes time O("edges in transition diagram" x N) and space $\mathbf{O}(K N)$ using memorization, where "edges" $\leq K^{2}$. Gives a significant speedup for many models in practice. The idea can also be applied to implementations of the forward- and backward-algorithm.

Example - 7-state HMM

Observable: $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$, States: $\{0,1,2,3,4,5,6\}$

	0.00	0.00	0.90	0.10	0.00	0.00	0.00		0.00		0.30	0.25	0.25	0.20
	1.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.20	0.35	0.15	0.30
	0.00	1.00	0.00	0.00	0.00	0.00	0.00		0.00		0.40	0.15	0.20	0.25
	0.00	0.00	0.05	0.90	0.05	0.00	0.00		1.00		0.25	0.25	0.25	0.25
	0.00	0.00	0.00	0.00	0.00	1.00	0.00		0.00		0.20	0.40	0.30	0.10
	0.00	0.00	0.00	0.00	0.00	0.00	1.00	π	0.00		0.30	0.20	0.30	0.20
	0.00	0.00	0.00	0.10	0.90	0.00	0.00	17	0.00	φ	0.15	0.30	0.20	0.35
$K=7, K^{2}=49, " e d g e s "=11$														

