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Probability theory allows us to describe uncertainty in the processes we model within
the exact and formal language of mathematics. While what we model might be full
of uncertainty — either intrinsically or because we lack a full understanding of what
we choose to model, or simply choose not to model at sufficient detail to eliminate
this uncertainty — the language we choose to reason with is formal and enable exact
reasoning.

This note is not intended as an introduction to probability theory, not even an
informal one — if that was the intend it would be substantially longer — but is simply
intended to remind you of the basic rules for manipulating multi-variable (joint and
conditional) probabilities and to introduce the notation we will use in this class when
manipulating probabilities.

The treatment of random variables and probabilities is intended to be informal. For
instance, I will generally pretend that the only difference between discrete and continuous
random variables is whether you sum or integrate over events. This might make some
mathematicians uncomfortable, and those I will recommend getting a propper text book
on probability and measure theory. For the purpose of this class, we can get away with
pretending that everything looks like a discrete set, even when it does not, because we
only work with “nice” sets. We leave it for the mathematicians to define what “nice”
means in this context.

1 Stochastic (“random”) variables

We will only be concerned with random variables and not define an underlying universe
of events and measures; we simply will have random variables that can take on different
values with different probabilities. So while formally a random/stochastic variable is a
function from events to values, we will only care about the values they take and the
probabilities of taking those values. So we can define a random variable X as a variable
that can take values in some domain DX if for each value in this domain we can assign
a probability/density p(X = x) ≥ 0 for all x ∈ DX . If DX is discrete we require∑

x∈DX
p(X = x) = 1 and if DX is continuous we require

∫
p(X = x) dx = 1 (but as I

mentioned above we generally won’t care much about whether we work with probabilities
or densities or whether we sum or integrate).
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We will follow the tradition of probability theory and be lazy with our notation.
We will just write p(X) for the function that assigns probabilities to possible outcomes
x 7→ p(X = x). Keep in mind, though, that this is just a bit of laziness. The variable
X is random in the sense that it can take on different values in DX . The probability we
assign to each x ∈ DX tells us how likely it is that X take on any of those values, but
p(X = x) is a number and not random at all. Also, there is a huge difference between a
random variable we haven’t observed yet and one we have: Once we have seen that X
takes the value x it is no longer random.

If you are so inclined — as I personally am — you can consider statistics the craft
of updating your knowledge of the un-observed from that which you have observed. We
initially build some model for how we think the probability of various outcomes could
be, and how they are related. This model can be more or less based on prior knowledge
of the domain that we model and often somewhat restricted by computational efficiency
and mathematical convenience. When we then observe the outcome of some of the
random variables in our model we learn more about the system and we can update the
probabilities of the as-yet unobserved random variables. This is played straight in so-
called Bayesian statistics, where unknown underlying parameters are considered random
variables and where inference exactly is updating conditional probabilities as we observe
more and more outcomes of random variables. It is not exactly the same in so-called
frequentists statistics where we update parameters that are considered unknown but not
random, but still here inference is also a question of updating our knowledge based on
the observed outcomes of random variables.

We return to how to do inference from observed data in another note, though. The
rest of this note concerns joint and conditional probabilities when we have more than
one variable.

2 Working with probabilities

If we want to express the probability that a random variable X falls in some subset of
its domain, A ⊆ DX , we have the probability p(X ∈ A) =

∑
x∈A p(X = x). That is, we

sum over all the possible outcomes of X that are in A. If A is empty this is a special
case with p(X ∈ A) = 0; if A = DX we have, by the definition of a random variable,
p(X ∈ A) = 1. These properties are typically given as part of the defintion of what a
probability is, and here we just take them as given as well.

If we have two sets, A ⊆ DX and B ⊆ DX , we similarly have p(X ∈ A ∪ B) =∑
x∈A∪B p(X = x). In general, p(X ∈ A ∪B) 6= p(X ∈ A) + p(X ∈ B) since that would

count elements in A ∩B more than once. In fact,

p(X ∈ A ∪B) = p(X ∈ A) + p(X ∈ B)− p(X ∈ A ∩B),

with p(X ∈ A∪B) = p(X ∈ A)+p(X ∈ B) only when p(X ∈ A∩B) = 0. The latter will
always be the case when A ∩ B = ∅, so whenever we have a set, A1, . . . , Ak, of disjoint
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subsets of DX we have

p

(
X ∈

⋃
k

Ak

)
=
∑
k

p(X ∈ Ak).

Whenever it is clear from context that we are working with the variable X we will
again be lazy with notation and write P (A) to mean P (X ∈ A) in which case we get

p

(⋃
k

Ak

)
=
∑
k

p(Ak).

2.1 Joint probabilities

If we have two random variables, X and Y , that can take values in domains DX and DY ,
we can assign probabilities for their joint outcome: p(X = x, Y = y) for x ∈ DX and
y ∈ DY . With our lazy notation we write simply p(X,Y ), although if we want to make
explicit that, say, X is actually observed to be x, we will write p(X = x, Y ). This is best
thought of as a function of Y that gives the joint probability of p(X = x, Y = y) for all
y in the domain of Y . The variable Y is still random even though we have observed x.

To express the probability that X falls in some subset A ⊆ DX and Y falls in some
subset B ⊆ DY we write p(X ∈ A, Y ∈ B) — or just p(A,B) if the context makes it
clear which variables goes with which sets — and we compute these probabilities by
summing over all the events in these sets:

p(A,B) =
∑
x∈A

∑
y∈B

p(X = x, Y = y).

Special cases of this general rule are when either A or B are singleton sets where
we are expressing, for example, that X falls in the set A while Y takes the value y:
p(A, y) =

∑
x∈A p(x, y).

Another special case is when any of the sets is the full domain of the random variable.
For

p(A,DY ) =
∑
x∈A

∑
y∈DY

p(X = x, Y = y) = p(X ∈ A)

we are in essence saying “X takes a value in A while Y takes any possible value” which
of course is the same as saying that X takes a value in A.

Summing over all possible values of a random variable as we just did here is called
marginalisation and is remarkably useful for something that seems so trivial.

This way of considering the joint outcome of two variables, and summing over the
possibilities that they fall in different subsets of their respective domains, readily gener-
alises to three or more variables: p(A,B,C), p(A,B,C,D), . . ..
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2.2 Conditional probabilities

We define the “conditional probability” p(Y |X) as the value that makes the following
equation true:

p(X)p(Y |X) = p(X,Y ).

When p(X) 6= 0 this means p(Y |X) = p(X,Y )/p(X), which has a useful intuitive
interpretation, but I prefer the definition above since it makes it less likely that we
divide by zero. When p(X) is zero, any value of p(Y |X) satisfy the equation (the
marginalisation rule above guarantees that p(X) = 0 implies p(X,Y ) = 0) and the
conditional probability is not well defined.

The conditional probability captures updated expectations about the values Y can
take after we have observed X (or at least observed that it falls in sum subset of DX). To
see this, think of p(X = x) =

∑
y∈DY

p(X = x, Y = y) as the total “probability mass”
on all pairs (x, y) ∈ {x} × DY and p(X = x, Y = y) as the “probability mass” on the
single point (x, y). It is thus the mass on (x, y) relative to all points with X = x rather
than the mass on (x, y) relative to all possible points (the unconditional probability).
For sets p(Y ∈ B |X ∈ A) the interpretation is the same: it is the mass on points A×B
relative to the mass on A×DY rather than relative to all possible points, DX ×DY .

Since we explicitly defined p(Y |X) this way, it is not surprising that we can al-
ways write the joint probability as the marginal times the conditional: p(X,Y ) =
p(X)p(Y |X). It is, after all, just a notation trick. It is a helpful trick, though, when
we are building models. We don’t need to specify the joint probability of two variables
explicitly — sometimes that can be difficult if we want the model to capture certain
aspects of the system we are interested in — instead we can just specify a marginal and
a conditional probability and then get the joint probability from that.

Of course, X is not special here and we might as well have chosen Y as the one to
have a marginal probability and X to be conditioned on Y :

p(X,Y ) = p(Y )p(X |Y )

The best choice is usually what is mathematical convenient when modelling and not
much more.

2.3 Bayes’ Theorem

Since both forms of marginal times conditional probabilities are are just notation for
the joint probability we have p(X)p(Y |X) = p(Y )p(X |Y ). If we have one of the
conditionals and want the other, we can therefore rewrite (assuming that it doesn’t trick
us into dividing by zero, which we should really try to avoid):

p(Y |X) =
p(Y )p(X |Y )

p(X)
.

This rewrite of conditionals is know as Bayes’ Theorem. Little more than a notation
trick, but immensely useful because of the way we typically build models. For some
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reason, it is just generally easier to build models where you have marginal probabilities
for the variables you are unlikely to directly observe and then specify the observed data
as conditional on these hidden variables. When you do inference you want to go in the
other direction: now you will have observed the variables you specified as conditional
on the hidden variables and you want to know the likely values of the hidden variables
conditional on the observations.

Even though I have called the conditional probability a notational trick a couple of
times I should stress that it is a probability distribution still. At least whenever the
outcome we condition on does not have zero probability. You can check yourself that it
assings non-negative values to all outcomes and sums to one:

∑
y∈DY

p(Y = y |X) = 1
whenever p(X) is not zero.

Your intuition should be that p(Y ) is the probability distribution that reflects the
likely outcomes of the random variable Y before you have observed the outcome of X
while P (Y |X) is the updated probability distribution that reflects the information you
got from observing X. This intuition is reflected in terminology from Bayesian statis-
tics where the marginal probability is called the prior probability and the conditional
probability the posterior probability.

Conditional probabilities generalises to more than two variables as well. For X, Y ,
and Y we have

p(X,Y, Z) = p(X)p(Y |X)p(Z |X,Y )

or
p(X,Y, Z) = p(Z)p(Y |Z)p(X |Y, Z)

or
p(X,Y, Z) = p(Y )p(Z |Y )p(X |Y, Z)

or any of the other compositions. Notice, however, that you have to condition on all the
variables you have specified earlier in the line of probabilities you multiply! In general
you cannot leave any of them out and still get the right conditional probability.

In case you are wondering what p(Z |X,Y ) means, aside from the value that would
the equation true — which is as good a definition as any — it is of course equal to
p(X,Y, Z)/p(X,Y ) as well (whenever p(X,Y ) 6= 0). This follows trivially from observing
that p(X)p(Y |X) = p(X,Y ) and then dividing on both side by this.

Generalisations to four or more random variables are trivial.

3 You have a joint probability — Now what?

Regardless of how we come up with a joint probability, once we have one we have a
complete specification of our mathematical/statistical model. Pretty much everything
we want to do from here on boils down to manipulations of this structure. (Again,
this is literally true for Bayesian statistics, I would claim, but not quite for frequentist
statistics; it isn’t all wrong there either, though).
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So what are those manipulations? We can split our random variables into three
kinds: Those we have observed (and that are thus no longer random), those we don’t
care about (called nuisance parameters; they are just there to build the model but we
don’t care about them as such), and those parameters we are interested in (that can be
underlying parameters we are interested in by themselves or future events we want to
predict).

Condition on observed parameters. If we have the joint probability p(X,Y, Z) but
we have already observed Z = z we are not really interested in the outcome of Z any
longer: we already know that it came out as z. We will still be interested in X and Y ,
so when observing Z we move our interest from p(X,Y, Z) to p(X,Y |Z). If there are
clever tricks for doing this we will exploit them — and some times there are as we will
see — but in general we can do it just from marginalisation. Remember

p(X,Y |Z) =
p(X,Y, Z)

p(Z)

and
p(Z) =

∑
X

∑
Y

p(X,Y, Z)

(where I took yet another chance to introduce lazy notation: when we want to sum over
all values of random variable we often write

∑
X p(X) to mean

∑
x∈DX

p(X = x). There
is a lot of such sloppy notation in the literature so you won’t be able to avoid it even if
I did it in this note. To be fully formal I should also have used p(Z = z) or p(Z ∈ C)
for z ∈ DZ and C ⊆ DZ , respectively, since that is what we mean when we say that Z
was observed, but again this is the way it will typically be written and in general it is
clear from context if Z is unknown or known whenever it actually matters).

Marginalise away nuisance parameters. Now, say I am really only interested in
the outcome of X. The Y variable was needed to connect the variable of interest, X, to
the variable I could observe, Z, but in itself it holds no interest to me. In that case I am
not interested in p(X,Y |Z) but in p(X |Z) which I can again get from marginalisation

p(X |Z) =
∑
Y

p(X,Y |Z).

Those are the general manipulations we do on a joint probability: when we observe
a random variable we move it from the joint probability so we condition on it instead
and when we don’t care about a variable we marginalise it away. What we are left with
is a joint probability of those variables we are still interested in, updated to best reflect
the observations we have made.

The summing over all possible values used in the marginalisation (and the implicit
marginalisation used in the conditioning) is potentially computational intractable, so we
cannot always simply do this. Some times clever algorithms are necessary, but they will
typically always just do one of those two things in a clever way.

6



4 Dependency graphs

We have a graphical notation we use to describe the dependency relationships when
specifying a joint probability as we did a section back. Each random variable is repre-
sented as a node, and whenever the the composition of the joint probability has a term
p(Y |X1, . . . , Xk) we have directed edges from all the Xi’s to Y . (We don’t really handle
terms like p(X,Y |Z) in this notation, so if you want to represent that simply replace
the pair X × Y with a single random variable W = X × Y representing the pairs and
you are fine).

X1 X2 X3 X4

If these graphs were only used to represent the kind of compositions we have seen
above we probably wouldn’t use them. For those compositions — that handle the full
general case of writing up a joint probability from the product of a list of conditionals —
the composition is given by the order at which we add variables. For each new variable to
add we must condition on all the previous. Dependency graphs are really most useful for
specifying joint probabilities when you do not have to condition on all earlier variables
in a composition. The interesting aspect for a dependency graph is that it shows the
independence relationships (which we discuss in more detail in the next section).

A general dependency graph is a directed acyclic graph where the nodes are our
random variables. It tells us how to compute the joint probability of these: if a(n)
denotes the (direct) ancestors of node n (the nodes with a direct edge to n) then the
joint probability of the graph is

∏
p(n | a(n)) — where we will be a bit sloppy and equate

the nodes with the random variables they represent.
Consider the joint probability p(X,Y, Z) specified by the graph below:

X Y Z

The graph specifies that p(X,Y, Z) = p(X)p(Y |X)p(Z |Y ) where the probability
for Z depends on Y but not on X as it would in the general case.

The graph below on the other hand specifies that p(X,Y, Z) = p(X)p(Y )p(Z |X,Y )
where Z depends on both X and Y but Y does not depend on X as it would in the
general case.

X Z Y

There are no general rules telling you when you can remove edges in dependency
graphs. That is a model choice and up to the modeller. The graphs simply specify
which marginal and which conditional probabilities are needed to compute the joint
probability.
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4.1 Example graphs

Independent and identically distributed random variables. Let’s consider a
typical inference setup: We have n random variables, X1, X2, . . . , Xn all independent
and identically distributed (IID). The “independent” here, obviously, means that there
are no dependence edges between them. Identically distributed means that they are
drawn from some distribution we can easily specify with a few parameters. One example
is so-called Bernoulli distributions that are random variables that turn out either true
or false and where a single parameter determines the probability for true instead of
false. If the Xi’s are Bernoulli distributed with parameter p it means p(Xi = 1) = p for
all i. This dependence of p is, of course, a dependency we can put in the dependency
graph, and a statistical question would then be: given observed values for the n random
variables, what is p?

In a Bayesian setting we assume that p is itself a random variable, perhaps uniformly
distributed between 0 and 1: p ∼ U [0, 1]. We can then add p to the dependency graph
with edges to all the Xi’s. The uniform distribution would be the prior distribution of
p and after observing all the outcomes of X1, . . . , Xi we can update this distribution to
the conditional, or posterior, distribution to narrow the range of likely p values.

X1 X2 X3 X4 X5

p

We do the same thing in frequentist statistics, there we just do not consider p a
random variable, so it doesn’t have a distribution. Instead it is initially considered
completely unknown and after we observe the Xi’s we have some knowledge of what it is
likely to be (but we do not represent this as uncertainty in the sense of randomness; this
is the big philosophical difference between Bayesian and frequentist statistics). We can
still represent p as a node in the graph, but then we will typically use a different kind
of nodes to make it clear that it is a parameter (known or unknown) and not a random
variable.

X1 X2 X3 X4 X5

p

Markov chains. As another example consider X1, . . . , Xn but this time we do not
consider then independent. Rather their dependency is

p(X1, . . . , Xn) = p(X1)p(X2 |X1)p(X3 |X2) · · · p(Xn |xn−1).
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X1 X2 X3 X4 X5

This type of structure, where the next variable depends on only one previous variable,
is called a Markov chain and is frequently used to model sequential data because of its
simple structure.

5 Independence and conditional independence

Above I called the lack of an edge we would normally expect a lack of dependency. If
the edge was there it would be an explicit dependency but the lack of it doesn’t actually
mean there isn’t a dependency.

To understand this we need to define what independence is. Whenever variables are
not independent there is a dependency, explicit or not.

The usual definition of independence is that X and Y are independent if p(X,Y ) =
p(X)p(Y ), that is that their joint probability equals the product of their marginal prob-
abilities. To see that this is a definition that matches well with our intuition consider the
compositions of p(X,Y ) = p(X)p(Y |X) = p(Y )p(X |Y ) = p(X)p(Y ). This equation
states that the conditional probability for Y equals its marginal p(Y |X) = p(Y ) and
similar for X: p(X |Y ) = p(X). So knowning the outcome of X doesn’t change the
distribution for Y and vice versa. That is what we mean by independence.

We also have conditional independence. This is when we have independence of two
conditional probabilities: p(X,Y |Z) = p(X |Z)p(Y |Z).

Independence of two variables does not guarantee conditional independence when a
third variable is introduced, nor does conditional independence guarantee dependence
when we don’t condition.

Example Consider p(X,Y, Z) = p(X)p(Y |X)p(Z |X):

Y

X

Z

Here, Y and Z are not (unconditional) independent since in general∑
X

p(X)p(Y |X)p(Z |X) 6= p(Y )p(Z).

If we condition on X, however, we have

p(Y, Z |X) =
p(X)p(Y |X)p(Z |X)

p(X)
= p(Y |X)p(Z |X)
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so Y and Z are independent once X is observed. This is actually a general pattern:
if two variables are dependent because they have a common ancestral variable in the
dependency graph, then observing that common ancestor makes them independent. (If
they are connected by more than this one path the relationship is less clear, of course).

The IID example we saw earlier has this form:

X1 X2 X3 X4 X5

p

From the observations we just made it follows that these independent identically
distributed random variables are not, in fact, independent unless we know the parameter
that determines their distribution. In the frequentist setting we do not consider p a
random variable — it is unknown but not random — so here they really are independent,
but in a Bayesian setting, where p is random, not knowing the parameter introduces a
dependency between the random variables.

This shouldn’t come as a surprise, though: if the parameters were independent then
observing the first n−1 outcomes should not give us information about the n’th outcome.
This means we wouldn’t be able to learn from observations. The dependency between
the variables is exactly the reason why we can use previous observations to make better
predictions about future observations.

Once the underlying parameter is know, however, the variables really are indepen-
dent. Seeing more outcomes will not help us get better estimates of p — we already
know what the value of p is — and in that case we can only predict the next observation
within the uncertainty of its distribution.

Example Consider p(X,Y, Z) = p(X)p(Y |X)p(Z |Y ):

X Y Z

Here, X and Z are not independent, since marginalising with respect to Y

p(X,Z) =
∑
Y

p(X)p(Y |X)p(Z |Y )

is not, in general, equal to p(X)p(Z).
We can, however, rewrite the joint probability, using Bayes’ theorem

p(X,Y, Z) = p(X)p(Y |X)p(Z |Y ) = p(X)
p(Y )p(X |Y )

p(X)
p(Z |Y ) = p(Y )p(X |Y )p(Z |Y )

and so if we condition on Y we get

p(X,Z |Y ) =
p(X,Y, Z)

p(Y )
= p(X |Y )p(Z |Y )
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showing that X and Z are independent if Y is observed.
This case has important implications for Markov models. Markov models have the

general structure of a sequence of pairwise dependent random variables (p(X)p(Y |X)p(Z |Y )
and so on), and in general they are not independent. If, however, we observe any of the
variables in the chain then the sequence before that observation and the sequence follow-
ing that observation are now independent. We can thus split a long chain into smaller,
independent, chains by conditioning on values along the chain.

Example Consider p(X,Y, Z) = p(X)p(Y )p(Z |X,Y ).

X

Z

Y

ClearlyX and Y are independent because we can marginalise away Z to get p(X,Y ) =∑
Z p(X)p(Y )p(Z |X,Y ) = p(X)p(Y ). If we condition on Z, however, we get p(X,Y |Z) =

p(X)p(Y )p(Z |X,Y )/p(Z) where in general p(Z |X,Y )/p(Z) is not identical to one (it
would be if Z was independent of the joint X and Y but in general it is not). So X and
Y are not conditional independent given Z.

An example of such a system could be this: X is 1 with probability p and 0 with
probability 1 − p, while Y is 1 with probability q and 0 with probability 1 − q, and
Z = X xor Y . If you build a table of all the possible outcomes and check, you will find
that p(X,Y ) = p(X)p(Y ) (because we did this by construction). If we know that Z is
1, however, X and Y are no longer independent. If X is 1 then Y has to be 0 and vice
versa. Knowing Z introduces a dependency between X and Y that wasn’t there before
we observed Z.

Again, this is a general pattern: whenever otherwise independent random variables
have shared descendants in the dependency graph, then observing these will introduce
a conditional dependence.

Consider a normally distributed random variable X ∼ N(µ, σ) where the parameters
are themselves random variables. A priori we consider µ and σ independent, but when
we observe X we update their posterior probability to reflect the observation.

µ

X

σ

These updates will not be independent: If we update µ to be closer to the observed
X then we would expect a smaller variance, σ, then if we move µ less towards X.
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