ML E2020 / CNSP 1/38

## **Hidden Markov Models**

### Algorithms for decoding



Christian Nørgaard Storm Pedersen

cstorm@birc.au.dk

ML E2020 / CNSP 2/38

## HMM joint probability distribution

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[ \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

Sequence of *N* observables from a set of D symbols:

Sequence of N hidden states from a set of K states:

Model parameters:

$$\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$$
  $\mathbf{Z} = {\mathbf{z}_1, \dots, \mathbf{z}_N}$   $\Theta = {\pi, \mathbf{A}, \phi}$ 

$$\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$$

$$\Theta = \{\pi, \mathbf{A}, \phi\}$$



If A and  $\phi$  are the same for all n then the HMM is homogeneous

ML E2020 / CNSP 3/38

## **HMM** joint probability distribution

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[ \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

Sequence of N

Sequence of N







If A and  $\phi$  are the same for all *n* then the HMM is *homogeneous* 

ML E2020 / CNSP 4/38

# **Decoding using HMMs**

Given a HMM  $\Theta$  and a sequence of observations  $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$ , find a plausible explanation, i.e. a sequence  $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$  of values of the hidden variable.

#### Viterbi decoding

**Z**\* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$$

#### **Posterior decoding**

 $\mathbf{z}^*$  is the most likely state to be in the *n*'th step:

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$$

ML E2020 / CNSP 5/38

## Viterbi decoding

Given **X**, find **Z\*** such that:  $\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$ 

$$p(\mathbf{X}, \mathbf{Z}^*) = \max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_N} p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N)$$

$$= \max_{\mathbf{z}_N} \max_{\mathbf{z}_1, \dots, \mathbf{z}_{N-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N)$$

$$= \max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

$$\mathbf{z}_N^* = \arg\max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

Where  $\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$  is the probability of the most likely sequence of states  $\mathbf{z}_1, \dots, \mathbf{z}_n$  ending in  $\mathbf{z}_n$  generating the observations  $\mathbf{x}_1, \dots, \mathbf{x}_n$ 

ML E2020 / CNSP 6/38

# Viterbi decoding

Given **X**, find **Z\*** such that:  $\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$ 

$$p(\mathbf{X}, \mathbf{Z}^*) = \max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_N} \omega[k][n] = \omega(\mathbf{z}_n) \text{ if } \mathbf{z}_n \text{ is state } k$$

$$= \max_{\mathbf{z}_N} \max_{\mathbf{z}_1, \dots, \mathbf{z}_{N-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_N)$$

$$= \max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

$$\mathbf{z}_N^* = \arg \max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

$$\mathbf{1} \qquad n \qquad N$$

Where  $\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$  is the probability of the most likely sequence of states  $\mathbf{z}_1, \dots, \mathbf{z}_n$  ending in  $\mathbf{z}_n$  generating the observations  $\mathbf{x}_1, \dots, \mathbf{x}_n$ 

## The $\omega$ -recursion

$$\omega(\mathbf{z}_n) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n) 
= \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_1) \prod_{i=2}^n p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^n p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_1) \prod_{i=2}^n p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_1) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_1) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_n | \mathbf{z}_{n-1}) \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_1) \prod_{i=2}^{n-1} p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_n | \mathbf{z}_{n-1}) \omega(\mathbf{z}_{n-1})$$

## The $\omega$ -recursion

$$\omega(\mathbf{z}_n) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n) 
= \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_1) \prod_{i=2}^n p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^n p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_1) \prod_{i=2}^n p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_1) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_1) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_n | \mathbf{z}_{n-1}) \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_1) \prod_{i=2}^{n-1} p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_i | \mathbf{z}_i) 
= p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_n | \mathbf{z}_{n-1}) \omega(\mathbf{z}_{n-1})$$

## The $\omega$ -recursion

 $\omega(\mathbf{z}_n)$  is the probability of the most likely sequence of states  $\mathbf{z}_1, ..., \mathbf{z}_n$  ending in  $\mathbf{z}_n$  generating the observations  $\mathbf{x}_1, ..., \mathbf{x}_n$ 

$$\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$$

#### **Recursion:**

 $\omega[k][n] = \omega(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

#### **Basis:**

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$



ML E2020 / CNSP 10/38

## The $\omega$ -recursion

// Pseudo code for computing  $\omega[k][n]$  for some n>1

$$\omega[k][n] = 0$$

for j = 1 to K:

$$\omega[k][n] = \max(\omega[k][n], p(x[n] | k) * \omega[j][n-1] * p(k | j))$$

$$\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$$

#### **Recursion:**

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

#### **Basis:**

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

of states  $\mathbf{z}_1, \dots, \mathbf{z}_n$ 

 $\omega[k][n] = \omega(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k



ML E2020 / CNSP

## The $\omega$ -recursion

// Pseudo code for computing  $\omega[k][n]$  for some n>1

$$\omega[k][n] = 0$$

for j = 1 to K:

$$\omega[k][n] = \max(\omega[k][n], p(x[n] | k) * \omega[j][n-1] * p(k | j))$$

$$\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$$

#### **Recursion:**

 $\omega[k][n] = \omega(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k

of states  $\mathbf{z}_1, \dots, \mathbf{z}_n$ 

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

#### **Basis:**

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Computing  $\omega$  takes **time O**( $K^2N$ ) and **space O**(KN) using memorization



# Viterbi decoding – Retrieving Z\*

 $\omega(\mathbf{z}_n)$  is the probability of the most likely sequence of states  $\mathbf{z}_1,...,\mathbf{z}_n$  ending in  $\mathbf{z}_n$  generating the observations  $\mathbf{x}_1,...,\mathbf{x}_n$ . We find  $\mathbf{Z}^*$  by backtracking:

$$\mathbf{z}_{N}^{*} = \arg \max_{\mathbf{z}_{N}} \omega(\mathbf{z}_{N}) = \arg \max_{\mathbf{z}_{N}} \max_{\mathbf{z}_{N-1}} \left( p(\mathbf{x}_{N}|\mathbf{z}_{N})\omega(\mathbf{z}_{n-1})p(\mathbf{z}_{N}|\mathbf{z}_{N-1}) \right)$$

$$\mathbf{z}_{N-1}^{*} = \arg \max_{\mathbf{z}_{N-1}} \left( p(\mathbf{x}_{N}|\mathbf{z}_{N}^{*})\omega(\mathbf{z}_{N-1})p(\mathbf{z}_{N}^{*}|\mathbf{z}_{N-1}) \right)$$

•

$$\omega[k][n] = \omega(\mathbf{z}_n) \text{ if } \mathbf{z}_n \text{ is state } k$$

$$1 \qquad n \qquad N$$

# // Pseudocode for backtracking z[1..N] = undef $z[N] = \text{arg max}_k \ \omega[k][N]$ for n = N-1 to 1: $z[n] = \text{arg max}_k \ (\ p(x[n+1] \mid z[n+1]) * \omega[k][n] * p(z[n+1] \mid k\ )\ )$ print z[1..N]

# ving Z\*

of states  $\mathbf{z}_1,...,\mathbf{z}_n$ We find  $\mathbf{Z}^*$  by

$$\mathbf{z}_{N}^{*} = \arg \max_{\mathbf{z}_{N}} \omega(\mathbf{z}_{N}) = \arg \max_{\mathbf{z}_{N}} \max_{\mathbf{z}_{N-1}} \left( p(\mathbf{x}_{N}|\mathbf{z}_{N})\omega(\mathbf{z}_{n-1})p(\mathbf{z}_{N}|\mathbf{z}_{N-1}) \right)$$

$$\mathbf{z}_{N-1}^{*} = \arg \max_{\mathbf{z}_{N-1}} \left( p(\mathbf{x}_{N}|\mathbf{z}_{N}^{*})\omega(\mathbf{z}_{N-1})p(\mathbf{z}_{N}^{*}|\mathbf{z}_{N-1}) \right)$$

•

 $\omega[k][n] = \omega(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k

ML E2020 / CNSP 14/38

```
// Pseudocode for backtracking  z[1..N] = \text{undef}   z[N] = \text{arg max}_k \ \omega[k][N]  for n = N-1 to 1:  z[n] = \text{arg max}_k \ (\ p(x[n+1] \mid z[n+1]) * \omega[k][n] * p(z[n+1] \mid k\ )\ )  print z[1..N]
```

# ving Z\*

of states **z**<sub>1</sub>,...,**z**<sub>n</sub>

We find **Z**\* by

$$\mathbf{z}_{N}^{*} = \arg \max_{\mathbf{z}_{N}} \omega(\mathbf{z}_{N}) = \arg \max_{\mathbf{z}_{N}} \max_{\mathbf{z}_{N-1}} \left( p(\mathbf{x}_{N}|\mathbf{z}_{N})\omega(\mathbf{z}_{n-1})p(\mathbf{z}_{N}|\mathbf{z}_{N-1}) \right)$$

$$\mathbf{z}_{N-1}^{*} = \arg \max_{\mathbf{z}_{N-1}} \left( p(\mathbf{x}_{N}|\mathbf{z}_{N}^{*})\omega(\mathbf{z}_{N-1})p(\mathbf{z}_{N}^{*}|\mathbf{z}_{N-1}) \right)$$

•

Backtracking takes time O(KN) and space O(KN) using  $\omega$ 

 $\omega[k][n] = \omega(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k



ML E2020 / CNSP 15/38

# **Decoding using HMMs**

Given a HMM  $\Theta$  and a sequence of observations  $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$ , find a plausible explanation, i.e. a sequence  $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$  of values of the hidden variable.

#### Viterbi decoding

**Z**\* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$$

#### **Posterior decoding**

 $\mathbf{z}^*$  is the most likely state to be in the *n*'th step:

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$$

ML E2020 / CNSP 16/38

## **Posterior decoding**

Given X, find Z\*, where  $\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$  is the most likely state to be in the *n*'th step.

$$p(\mathbf{z}_{n}|\mathbf{x}_{1},...,\mathbf{x}_{N}) = \frac{p(\mathbf{z}_{n},\mathbf{x}_{1},...,\mathbf{x}_{N})}{p(\mathbf{x}_{1},...,\mathbf{x}_{N})}$$

$$= \frac{p(\mathbf{x}_{1},...,\mathbf{x}_{n},\mathbf{z}_{n})p(\mathbf{x}_{n+1},...,\mathbf{x}_{N}|\mathbf{z}_{n},\mathbf{x}_{1},...,\mathbf{x}_{n})}{p(\mathbf{x}_{1},...,\mathbf{x}_{N})}$$

$$= \frac{p(\mathbf{x}_{1},...,\mathbf{x}_{n},\mathbf{z}_{n})p(\mathbf{x}_{n+1},...,\mathbf{x}_{N}|\mathbf{z}_{n})}{p(\mathbf{x}_{1},...,\mathbf{x}_{N})}$$

$$= \frac{\alpha(\mathbf{z}_{n})\beta(\mathbf{z}_{n})}{p(\mathbf{X})}$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

## **Posterior decoding**

 $\alpha(\mathbf{z}_n)$  is the joint probability of observing  $\mathbf{x}_1, \dots, \mathbf{x}_n$  and being in state  $\mathbf{z}_n$ 

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\beta(\mathbf{z}_n)$  is the conditional probability of future observation  $\mathbf{x}_{n+1},...,\mathbf{x}_N$  assuming being in state  $\mathbf{z}_n$ 

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

 $\alpha[k][n] = \alpha(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k



 $\beta[k][n] = \beta(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k



ML E2020 / CNSP 18/38

## **Posterior decoding**

 $\alpha(\mathbf{z}_n)$  is the joint probability of observing  $\mathbf{x}_1, \dots, \mathbf{x}_n$  and being in state  $\mathbf{z}_n$ 

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\beta(\mathbf{z}_n)$  is the conditional probability of future observation  $\mathbf{x}_{n+1},...,\mathbf{x}_N$  assuming being in state  $\mathbf{z}_n$ 

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

Using  $\alpha(\mathbf{z}_n)$  and  $\beta(\mathbf{z}_n)$  we get the likelihood of the observations as:

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) \qquad p(\mathbf{X}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

ML E2020 / CNSP 19/38

## The forward algorithm

 $\alpha(\mathbf{z}_n)$  is the joint probability of observing  $\mathbf{x}_1, \dots, \mathbf{x}_n$  and being in state  $\mathbf{z}_n$ 

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\alpha[k][n] = \alpha(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k



ML E2020 / CNSP

## The $\alpha$ -recursion

$$\alpha(\mathbf{z}_{n}) = p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \alpha(\mathbf{z}_{n-1})$$

ML E2020 / CNSP

## The α-recursion

$$\alpha(\mathbf{z}_{n}) = p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \alpha(\mathbf{z}_{n-1})$$

# The forward algorithm

 $\alpha(\mathbf{z}_n)$  is the joint probability of observing  $\mathbf{x}_1, \dots, \mathbf{x}_n$  and being in state  $\mathbf{z}_n$ 

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

#### **Recursion:**

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

#### **Basis:**

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

$$\alpha[k][n] = \alpha(\mathbf{z}_n)$$
 if  $\mathbf{z}_n$  is state  $k$ 





ML E2020 / CNSP

# The forward algorithm

// Pseudo code for computing  $\alpha[k][n]$  for some n>1

$$\alpha[k][n] = 0$$

for 
$$j = 1$$
 to  $K$ :

$$\alpha[k][n] = \alpha[k][n] + p(x[n] | k) * \alpha[j][n-1] * p(k | j)$$

#### **Recursion:**

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

#### **Basis:**

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

 $\alpha[k][n] = \alpha(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k

## being in state $\mathbf{z}_n$





# The forward algorithm

// Pseudo code for computing  $\alpha[k][n]$  for some n>1

$$\alpha[k][n] = 0$$

for 
$$j = 1$$
 to  $K$ :

$$\alpha[k][n] = \alpha[k][n] + p(x[n] | k) * \alpha[j][n-1] * p(k | j)$$

#### **Recursion:**

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

#### **Basis:**

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Computing  $\alpha$  takes time  $O(K^2N)$  and space O(KN) using memorization

tate *k* 

## being in state $\mathbf{z}_n$





ML E2020 / CNSP 25/38

## The backward algorithm

 $\beta(\mathbf{z}_n)$  is the conditional probability of future observation  $\mathbf{x}_{n+1},...,\mathbf{x}_N$  assuming being in state  $\mathbf{z}_n$ 

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

 $\beta[k][n] = \beta(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k



ML E2020 / CNSP

# The $\beta$ -recursion

$$\beta(\mathbf{z}_n) = p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

$$= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_N} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N, \mathbf{z}_{n+1}, \dots, \mathbf{z}_N | \mathbf{z}_n)$$

$$= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_N} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N, \mathbf{z}_n, \mathbf{z}_{n+1}, \dots, \mathbf{z}_N) / p(\mathbf{z}_n)$$

$$= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_N} p(\mathbf{z}_n) \prod_{i=n+1}^N p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=n+1}^N p(\mathbf{x}_i | \mathbf{z}_i) / p(\mathbf{z}_n)$$

$$= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_N} \prod_{i=n+1}^N p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=n+1}^N p(\mathbf{x}_i | \mathbf{z}_i)$$

$$= \sum_{\mathbf{z}_{n+1}} \sum_{\mathbf{z}_{n+2}, \dots, \mathbf{z}_N} p(\mathbf{z}_{n+1} | \mathbf{z}_n) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \prod_{i=n+2}^N p(\mathbf{z}_i | \mathbf{z}_{i-1}) \prod_{i=n+2}^N p(\mathbf{x}_i | \mathbf{z}_i)$$

$$= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_n) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{x}_{n+2}, \dots, \mathbf{x}_N | \mathbf{z}_{n+1})$$

$$= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_n) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \beta(\mathbf{z}_{n+1})$$

ML E2020 / CNSP 27/38

## The $\beta$ -recursion

$$\beta(\mathbf{z}_{n}) = p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N} | \mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N}, \mathbf{z}_{n+1}, \dots, \mathbf{z}_{N} | \mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N}, \mathbf{z}_{n}, \mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}) / p(\mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{z}_{n}) \prod_{i=n+1}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+1}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) / p(\mathbf{z}_{n})$$

$$= \sum_{\mathbf{z}_{n+1}} \prod_{\mathbf{z}_{n+2}, \dots, \mathbf{z}_{N}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \prod_{i=n+2}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+2}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \sum_{\mathbf{z}_{n+2}, \dots, \mathbf{z}_{N}} \prod_{i=n+2}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+2}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i})$$

$$= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{x}_{n+2}, \dots, \mathbf{x}_{N} | \mathbf{z}_{n+1})$$

$$= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \beta(\mathbf{z}_{n+1})$$

 $\beta(z_{n+1,1})$ 

# The backward algorithm

 $\beta(\mathbf{z}_n)$  is the conditional probability of future observation  $\mathbf{x}_{n+1},...,\mathbf{x}_N$  assuming being in state  $\mathbf{z}_n$ 

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

#### **Recursion:**

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

#### **Basis:**

$$\beta(\mathbf{z}_N) = 1$$

k = 2  $A_{13}$   $p(\mathbf{x}_{n}|z_{n+1,2})$  k = 3 n n+1  $p(\mathbf{x}_{n}|z_{n+1,3})$  k k 1 n N

 $\beta[k][n] = \beta(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k

# The backward algorithm

// Pseudo code for computing  $\beta[k][n]$  for some n < N

$$\beta[k][n] = 0$$

for j = 1 to K:

$$\beta[k][n] = \beta[k][n] + p(j | k) * p(x[n+1] | j) * \beta[j][n+1]$$

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

#### **Recursion:**

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

#### **Basis:**

$$\beta(\mathbf{z}_N) = 1$$



ion  $\mathbf{X}_{n+1}, \dots, \mathbf{X}_{N}$ 

 $\beta(z_{n+1,1})$ 

 $\beta[k][n] = \beta(\mathbf{z}_n)$  if  $\mathbf{z}_n$  is state k

# The backward algorithm

// Pseudo code for computing  $\beta[k][n]$  for some n < N

$$\beta[k][n] = 0$$

for j = 1 to K:

$$\beta[k][n] = \beta[k][n] + p(j | k) * p(x[n+1] | j) * \beta[j][n+1]$$

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

#### **Recursion:**

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$
<sub>k=3</sub>

#### **Basis:**

$$\beta(\mathbf{z}_N) = 1$$

Computing  $\beta$  takes time  $O(K^2N)$  and space O(KN) using memorization



ML E2020 / CNSP 31/38

## **Posterior decoding**

 $\alpha(\mathbf{z}_n)$  is the joint probability of observing  $\mathbf{x}_1, \dots, \mathbf{x}_n$  and being in state  $\mathbf{z}_n$ 

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\beta(\mathbf{z}_n)$  is the conditional probability of future observation  $\mathbf{x}_{n+1},...,\mathbf{x}_N$  assuming being in state  $\mathbf{z}_n$ 

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

Using  $\alpha(\mathbf{z}_n)$  and  $\beta(\mathbf{z}_n)$  we get the likelihood of the observations as:

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) \qquad p(\mathbf{X}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

ML E2020 / CNSP 32/38

```
// Pseudocode for posterior decoding
```

Compute  $\alpha[1..K][1..N]$  and  $\beta[1..K][1..N]$ 

$$pX = \alpha[1][N] + \alpha[2][N] + ... + \alpha[K][N]$$

z[1..N] = undef

for n = 1 to N:

 $z[n] = \arg \max_{k} (\alpha[k][n] * \beta[k][n] / pX)$ 

print z[1..N]

assuming being in state z

d being in state **z**<sub>n</sub>

ation 
$$\mathbf{x}_{n+1},...,\mathbf{x}_{N}$$

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

Using  $\alpha(\mathbf{z}_n)$  and  $\beta(\mathbf{z}_n)$  we get the likelihood of the observations as:

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) \qquad p(\mathbf{X}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

ML E2020 / CNSP 33/38

## Viterbi vs. Posterior decoding

A sequence of states  $\mathbf{z}_1, ..., \mathbf{z}_N$  where  $p(\mathbf{x}_1, ..., \mathbf{x}_N, \mathbf{z}_1, ..., \mathbf{z}_N) > 0$  is a legal (or syntactically correct) decoding of  $\mathbf{X}$ .

Viterbi finds the most likely syntactically correct decoding of **X**.

What does Posterior decoding find?

Does it always find a syntactically correct decoding of X?

## Viterbi vs. Posterior decoding

A sequence of states  $\mathbf{z}_1, \dots, \mathbf{z}_N$  where  $p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N) > 0$  is a legal (or syntactically correct) decoding of  $\mathbf{X}$ .

Viterbi finds the most likely syntactically correct decoding of **X**.

What does Posterior decoding find?

Does it always find a syntactically correct decoding of X?



Emits a sequence of A and Bs following either the path 12....2 or 13....3 with equal probability

I.e. Viterbi finds either 12...2 or 13...3, while Posterior finds that 2 and 3 are equally likely for *n*>1.

ML E2020 / CNSP 35/38

# **Recall: Using HMMs**

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

$$p(\mathbf{X}|\mathbf{\Theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

The sum has  $K^N$  terms, but it turns out that it can be computed in  $O(K^2N)$  time by computing the  $\alpha$ -table using the forward algorithm and summing the last column:

$$p(X) = \alpha[1][N] + \alpha[2][N] + ... + \alpha[K][N]$$

ML E2020 / CNSP 36/38

## **Summary**

- Viterbi- and Posterior decoding for finding a plausible underlying explanation (sequence of hidden states) of a sequence of observations.
- forward-backward algorithms for computing the likelihood of being in a given state in the n'th step, and for determining the likelihood of a sequence of observations.

#### Viterbi

Recursion:  $\omega(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$ 

Basis:  $\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$ 

#### **Forward**

Recursion:  $\alpha(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$ 

Basis:  $\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$ 

#### **Backward**

Recursion:  $\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$ 

Basis:  $\beta(\mathbf{z}_N) = 1$ 

ML E2020 / CNSP 38/38

**Problem:** The values in the  $\omega$ -,  $\alpha$ -, and  $\beta$ -tables can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points and get underflow

Next: How to implement the basic algorithms (forward, backward, and Viterbi) in a "numerically" sound manner.

Recursion: 
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$$

**Basis:** 
$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

#### **Backward**

Recursion: 
$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

Basis: 
$$\beta(\mathbf{z}_N) = 1$$