Hidden Markov Models

 Algorithms for decoding

Christian Nørgaard Storm Pedersen
cstorm@birc.au.dk

HMM joint probability distribution

$$
p(\mathbf{X}, \mathbf{Z} \mid \mathbf{\Theta})=p\left(\mathbf{z}_{1} \mid \pi\right)\left[\prod_{n=2}^{N} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}, \mathbf{A}\right)\right] \prod_{n=1}^{N} p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}, \phi\right)
$$

Sequence of N observables from a set of D symbols:

Sequence of N hidden states from a set of K states:

Model parameters:
$\Theta=\{\pi, \mathbf{A}, \phi\}$

$$
\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \quad \mathbf{Z}=\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right\}
$$

If A and $\boldsymbol{\Phi}$ are the same for all n then the HMM is homogeneous

HMM joint probability distribution

$$
p(\mathbf{X}, \mathbf{Z} \mid \mathbf{\Theta})=p\left(\mathbf{z}_{1} \mid \pi\right)\left[\prod_{n=2}^{N} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}, \mathbf{A}\right)\right] \prod_{n=1}^{N} p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}, \phi\right)
$$

Sequence of N

If A and $\boldsymbol{\Phi}$ are the same for all n then the HMM is homogeneous

Decoding using HMMs

Given a HMM $\boldsymbol{\Theta}$ and a sequence of observations $\mathbf{X}=\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, find a plausible explanation, i.e. a sequence $\mathbf{Z}^{*}=\mathbf{Z}_{1}{ }_{1}, \ldots, \mathbf{Z}_{N}{ }_{N}$ of values of the hidden variable.

Viterbi decoding

\mathbf{Z}^{*} is the overall most likely explanation of \mathbf{X} :

$$
\mathbf{Z}^{*}=\arg \max _{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\Theta})
$$

Posterior decoding

$\mathbf{z}^{*}{ }_{n}$ is the most likely state to be in the n 'th step:

$$
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)
$$

Viterbi decoding

Given \mathbf{X}, find \mathbf{Z}^{*} such that: $\mathbf{Z}^{*}=\arg \max _{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\Theta})$

$$
\begin{aligned}
p\left(\mathbf{X}, \mathbf{Z}^{*}\right) & =\max _{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z})=\max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right) \\
& =\max _{\mathbf{z}_{N}} \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{N-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right) \\
& =\max _{\mathbf{z}_{N}} \omega\left(\mathbf{z}_{N}\right) \\
\mathbf{z}_{N}^{*} & =\arg \max _{\mathbf{z}_{N}} \omega\left(\mathbf{z}_{N}\right)
\end{aligned}
$$

Where $\omega\left(\mathbf{z}_{n}\right) \equiv \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$ is the probability of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ending in \mathbf{z}_{n} generating the observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

Viterbi decoding

Given \mathbf{X}, find \mathbf{Z}^{*} such that: $\mathbf{Z}^{*}=\arg \max _{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\Theta})$

$$
\begin{aligned}
p\left(\mathbf{X}, \mathbf{Z}^{*}\right) & =\max _{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z})=\max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}} \omega[k][n]=\omega\left(\mathbf{z}_{n}\right) \text { if } \mathbf{z}_{n} \text { is state } k \\
& =\max _{\mathbf{z}_{N}} \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{N-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right. \\
& =\max _{\mathbf{z}_{N}} \omega\left(\mathbf{z}_{N}\right) \\
\mathbf{z}_{N}^{*} & =\arg \max _{\mathbf{z}_{N}} \omega\left(\mathbf{z}_{N}\right)
\end{aligned}
$$

Where $\omega\left(\mathbf{z}_{n}\right) \equiv \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$ is the probability of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ending in \mathbf{z}_{n} generating the observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

The ω-recursion

$$
\begin{aligned}
\omega\left(\mathbf{z}_{n}\right)= & \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right) \\
= & \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}}^{n-1} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \omega\left(\mathbf{z}_{n-1}\right)
\end{aligned}
$$

The ω-recursion

$$
\begin{aligned}
\omega\left(\mathbf{z}_{n}\right) & =\max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right) \\
& =\max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n}=1}^{n-1} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}}^{n-1} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \omega\left(\mathbf{z}_{n-1}\right)
\end{aligned}
$$

The w-recursion

$\omega\left(\mathbf{z}_{n}\right)$ is the probability of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ending in \mathbf{z}_{n} generating the observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

$$
\omega\left(\mathbf{z}_{n}\right) \equiv \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)
$$

Recursion:

$\omega[k][n]=\omega\left(\boldsymbol{z}_{n}\right)$ if \boldsymbol{z}_{n} is state k

$\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis:

$$
\omega\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

The ω-recursion

// Pseudo code for computing $\omega[k][n]$ for some $n>1$
$\omega[k][n]=0$
Jf states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ for $j=1$ to K :

$$
\omega[k][n]=\max \left(\omega[k][n], \mathrm{p}(\mathrm{x}[n] \mid k)^{*} \omega[j][n-1] * p(k \mid j)\right)
$$

$\omega\left(\mathbf{z}_{n}\right) \equiv \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$

Recursion:

$\omega[k][n]=\omega\left(\mathbf{z}_{n}\right)$ if \boldsymbol{z}_{n} is state k

$\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis:

$$
\omega\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

The ω-recursion

// Pseudo code for computing $\omega[k][n]$ for some $n>1$
$\omega[k][n]=0$
for $j=1$ to K :

$$
\begin{aligned}
\omega[k][n] & =\max \left(\omega[k][n], \mathrm{p}(\mathrm{x}[n] \mid k)^{*} \omega[j][n-1]^{*} p(k \mid j)\right) \\
\omega\left(\mathbf{z}_{n}\right) & \equiv \max _{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)
\end{aligned}
$$

Jf states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$

Recursion:

$$
\omega[k][n]=\omega\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

$\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis:

$$
\omega\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

Computing ω takes time $\mathbf{O}\left(K^{2} N\right)$ and space $O(K N)$ using memorization

Viterbi decoding - Retrieving Z*

$\omega\left(\mathbf{z}_{n}\right)$ is the probability of the most likely sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}$ ending in \mathbf{z}_{n} generating the observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$. We find \mathbf{Z}^{*} by backtracking:

$$
\begin{aligned}
\mathbf{z}_{N}^{*} & =\arg \max _{\mathbf{z}_{N}} \omega\left(\mathbf{z}_{N}\right)=\arg \max _{\mathbf{z}_{N}} \max _{\mathbf{z}_{N-1}}\left(p\left(\mathbf{x}_{N} \mid \mathbf{z}_{N}\right) \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{N} \mid \mathbf{z}_{N-1}\right)\right) \\
\mathbf{z}_{N-1}^{*} & =\arg \max _{\mathbf{z}_{N-1}}\left(p\left(\mathbf{x}_{N} \mid \mathbf{z}_{N}^{*}\right) \omega\left(\mathbf{z}_{N-1}\right) p\left(\mathbf{z}_{N}^{*} \mid \mathbf{z}_{N-1}\right)\right)
\end{aligned}
$$

// Pseudocode for backtracking

```
z[1..N] = undef
z[N]= arg max 
for n=N-1 to 1:
    z[n] = arg max 
```

print z [1..N]

$$
\begin{aligned}
\mathbf{z}_{N}^{*} & =\arg \max _{\mathbf{z}_{N}} \omega\left(\mathbf{z}_{N}\right)=\arg \max _{\mathbf{z}_{N}} \max _{\mathbf{z}_{N-1}}\left(p\left(\mathbf{x}_{N} \mid \mathbf{z}_{N}\right) \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{N} \mid \mathbf{z}_{N-1}\right)\right) \\
\mathbf{z}_{N-1}^{*} & =\arg \max _{\mathbf{z}_{N-1}}\left(p\left(\mathbf{x}_{N} \mid \mathbf{z}_{N}^{*}\right) \omega\left(\mathbf{z}_{N-1}\right) p\left(\mathbf{z}_{N}^{*} \mid \mathbf{z}_{N-1}\right)\right)
\end{aligned}
$$

// Pseudocode for backtracking

```
z[1..N] = undef
z[N]= arg max 
for n=N-1 to 1:
    z[n] = arg max 
```

print $\mathrm{z}[1 . \mathrm{N}]$

$$
\begin{aligned}
\mathbf{z}_{N}^{*} & =\arg \max _{\mathbf{z}_{N}} \omega\left(\mathbf{z}_{N}\right)=\arg \max _{\mathbf{z}_{N}} \max _{\mathbf{z}_{N-1}}\left(p\left(\mathbf{x}_{N} \mid \mathbf{z}_{N}\right) \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{N} \mid \mathbf{z}_{N-1}\right)\right) \\
\mathbf{z}_{N-1}^{*} & =\arg \max _{\mathbf{z}_{N-1}}\left(p\left(\mathbf{x}_{N} \mid \mathbf{z}_{N}^{*}\right) \omega\left(\mathbf{z}_{N-1}\right) p\left(\mathbf{z}_{N}^{*} \mid \mathbf{z}_{N-1}\right)\right)
\end{aligned}
$$

Backtracking takes time $\mathbf{O}(K N)$ and space $O(K N)$ using ω

$$
\omega[k][n]=\omega\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

Decoding using HMMs

Given a HMM $\boldsymbol{\Theta}$ and a sequence of observations $\mathbf{X}=\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, find a plausible explanation, i.e. a sequence $\mathbf{Z}^{*}=\mathbf{Z}_{1}{ }_{1}, \ldots, \mathbf{Z}_{N}{ }_{N}$ of values of the hidden variable.

Viterbi decoding

\mathbf{Z}^{*} is the overall most likely explanation of \mathbf{X} :

$$
\mathbf{Z}^{*}=\arg \max _{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\Theta})
$$

Posterior decoding

$\mathbf{z}^{*}{ }_{n}$ is the most likely state to be in the n 'th step:

$$
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)
$$

Posterior decoding

Given X, find \mathbf{Z}^{*}, where $\mathbf{z}_{n}^{*}=\arg \max p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ is the most likely state to be in the n 'th step.

$$
\begin{aligned}
p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right) & =\frac{p\left(\mathbf{z}_{n}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)} \\
& =\frac{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)} \\
& =\frac{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)}{p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)} \\
& =\frac{\alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right)}{p(\mathbf{X})}
\end{aligned}
$$

$$
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\arg \max _{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) / p(\mathbf{X})
$$

Posterior decoding

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

$\beta\left(\mathbf{z}_{n}\right)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$ assuming being in state \mathbf{z}_{n}

$$
\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)
$$

$\alpha[k][n]=\alpha\left(\boldsymbol{z}_{n}\right)$ if \boldsymbol{z}_{n} is state k

1
$n \quad N$
$\beta[k][n]=\beta\left(z_{n}\right)$ if \boldsymbol{z}_{n} is state k

Posterior decoding

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

$\beta\left(\mathbf{z}_{n}\right)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$ assuming being in state \mathbf{z}_{n}

$$
\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)
$$

Using $\alpha\left(\mathbf{z}_{n}\right)$ and $\beta\left(\mathbf{z}_{n}\right)$ we get the likelihood of the observations as:

$$
p(\mathbf{X})=\sum_{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) \quad p(\mathbf{X})=\sum_{\mathbf{z}_{N}} \alpha\left(\mathbf{z}_{N}\right)
$$

$$
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\arg \max _{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) / p(\mathbf{X})
$$

The forward algorithm

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

$\alpha[k][n]=\alpha\left(\mathbf{z}_{n}\right)$ if \mathbf{z}_{n} is state k

The α-recursion

$$
\begin{aligned}
\alpha\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
= & p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \alpha\left(\mathbf{z}_{n-1}\right)
\end{aligned}
$$

The α-recursion

$$
\begin{aligned}
\alpha\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-1}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}} p\left(\mathbf{z}_{1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \sum_{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}}^{n-1} p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n-1} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n-1} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right) \alpha\left(\mathbf{z}_{n-1}\right)
\end{aligned}
$$

The forward algorithm

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

Recursion:
$\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis:

$$
\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

$$
\alpha[k][n]=\alpha\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

The forward algorithm

// Pseudo code for computing $\alpha[k][n]$ for some $n>1$
$\alpha[k][n]=0$
for $j=1$ to K :

$$
\alpha[k][n]=a[k][n]+p(\mathrm{x}[n] \mid k)^{*} a[j][n-1] * p(k \mid j)
$$

Recursion:

$$
\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$ being in state \mathbf{z}_{n}

Basis:

$$
\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

$$
\alpha[k][n]=\alpha\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

The forward algorithm

// Pseudo code for computing $\alpha[k][n]$ for some $n>1$
$\alpha[k][n]=0$
for $j=1$ to K :

$$
\alpha[k][n]=\alpha[k][n]+p(x[n] \mid k)^{*} \alpha[j][n-1]^{*} p(k \mid j)
$$

Recursion:

$$
\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

Basis:

$$
\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)
$$

Computing α takes time $\mathbf{O}\left(K^{2} N\right)$ and space $\mathbf{O}(K N)$ using memorization
being in state \mathbf{z}_{n}

The backward algorithm

$\beta\left(\mathbf{z}_{n}\right)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$ assuming being in state \mathbf{z}_{n}

$$
\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)
$$

$\beta[k][n]=\beta\left(\mathbf{z}_{n}\right)$ if \boldsymbol{z}_{n} is state k

The β-recursion

$$
\begin{aligned}
& \beta\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{n}, \mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}\right) / p\left(\mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{z}_{n}\right) \prod_{i=n+1}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+1}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) / p\left(\mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} \prod_{i=n+1}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+1}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =\sum_{\mathbf{z}_{n+1}} \sum_{\mathbf{z}_{n+2}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) \prod_{i=n+2}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+2}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =\sum_{\mathbf{z}_{n+1}} p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) \sum_{\mathbf{z}_{n+2}, \ldots, \mathbf{z}_{N}} \prod_{i=n+2}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+2}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =\sum_{\mathbf{z}_{n+1}} p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+2}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n+1}\right) \\
& =\sum_{\mathbf{z}_{n+1}} p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) \beta\left(\mathbf{z}_{n+1}\right)
\end{aligned}
$$

The β-recursion

$$
\begin{aligned}
\beta\left(\mathbf{z}_{n}\right) & =p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{n}, \mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}\right) / p\left(\mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{z}_{n}\right) \prod_{i=n+1}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+1}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) / p\left(\mathbf{z}_{n}\right) \\
& =\sum_{\mathbf{z}_{n+1},}^{N} \prod_{\mathbf{z}_{N}} \prod_{i=n+1}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+1}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \prod_{\mathbf{z}_{n+1}} p \sum_{i=n+2}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+2}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right) \\
& =\sum_{\sum_{n+2}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) \prod_{\mathbf{z}_{n}}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+2}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right)
\end{aligned}
$$

The backward algorithm

$\beta\left(\mathbf{z}_{n}\right)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$ assuming being in state \mathbf{z}_{n}

$$
\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)
$$

Recursion:
$\beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \underbrace{\square}_{k=3} \underbrace{p\left(z_{n+1}, 3\left(\mathbf{x}_{n} \mid z_{n+1}, s\right)\right.}_{n+1 \mathbf{x}^{2}}$
Basis:

$$
\beta\left(\mathbf{z}_{N}\right)=1
$$

$$
\beta[k][n]=\beta\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

The backward algorithm

// Pseudo code for computing $\beta[k][n]$ for some $n<N$
$\beta[k][n]=0$
for $j=1$ to K :
$\beta[k][n]=\beta[k][n]+p(j \mid k)^{*} p(x[n+1] \mid j)^{*} \beta[j][n+1]$
$\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)$
Recursion:
$\beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right) \prod_{k=3}^{\beta\left(z_{n+1,3}\right)} \square_{\left.n+1 \mathbf{x}_{n} \mid z_{n+1,2}\right)}^{n}{ }_{p\left(\mathbf{x}_{n} \mid z_{n+1,3}\right)}$
Basis:

$$
\beta\left(\mathbf{z}_{N}\right)=1
$$

$$
\beta[k][n]=\beta\left(\boldsymbol{z}_{n}\right) \text { if } \boldsymbol{z}_{n} \text { is state } k
$$

The backward algorithm

// Pseudo code for computing $\beta[k][n]$ for some $n<N$
$\beta[k][n]=0$
for $j=1$ to K :

$$
\begin{aligned}
& \beta[k][n]=\beta[k][n]+p(j \mid k)^{*} p(x[n+1] \mid j)^{*} \beta[j][n+1] \\
& \beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)
\end{aligned}
$$

Recursion:

$$
\beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right)
$$

Basis:
 Bas

$$
\beta\left(\mathbf{z}_{N}\right)=1
$$

Computing β takes time $\mathbf{O}\left(\mathbf{K}^{2} \mathbf{N}\right)$ and space $\mathbf{O}(K N)$ using memorization
$\operatorname{ion} \mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$

$\begin{array}{lll}1 & n & N\end{array}$

$$
\left.\mathbf{Z}_{n}\right)
$$

Posterior decoding

$\alpha\left(\mathbf{z}_{n}\right)$ is the joint probability of observing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and being in state \mathbf{z}_{n}

$$
\alpha\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right)
$$

$\beta\left(\mathbf{z}_{n}\right)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$ assuming being in state \mathbf{z}_{n}

$$
\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)
$$

Using $\alpha\left(\mathbf{z}_{n}\right)$ and $\beta\left(\mathbf{z}_{n}\right)$ we get the likelihood of the observations as:

$$
p(\mathbf{X})=\sum_{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) \quad p(\mathbf{X})=\sum_{\mathbf{z}_{N}} \alpha\left(\mathbf{z}_{N}\right)
$$

$$
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\arg \max _{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) / p(\mathbf{X})
$$

// Pseudocode for posterior decoding
Compute $\alpha[1 . . K][1 . . N]$ and $\beta[1 . . K][1 . . N]$
$\mathrm{pX}=\alpha[1][N]+\alpha[2][N]+\ldots+\alpha[K][N]$
$z[1 . . N]=$ undef
for $n=1$ to N :
$\mathrm{z}[n]=\arg \max _{\mathrm{k}}\left(\alpha[k][n]{ }^{*} \beta[k][n] / \mathrm{pX}\right)$
print $\mathrm{z}[1 . \mathrm{N}]$
assuming being in state \mathbf{z}_{n}

$$
\beta\left(\mathbf{z}_{n}\right) \equiv p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)
$$

Using $\alpha\left(\mathbf{z}_{n}\right)$ and $\beta\left(\mathbf{z}_{n}\right)$ we get the likelihood of the observations as:

$$
\begin{gathered}
p(\mathbf{X})=\sum_{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) \quad p(\mathbf{X})=\sum_{\mathbf{z}_{N}} \alpha\left(\mathbf{z}_{N}\right) \\
\mathbf{z}_{n}^{*}=\arg \max _{\mathbf{z}_{n}} p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)=\arg \max _{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right) / p(\mathbf{X})
\end{gathered}
$$

Viterbi vs. Posterior decoding

A sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$ where $p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N^{\prime}}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)>0$ is a legal (or syntactically correct) decoding of \mathbf{X}.

Viterbi finds the most likely syntactically correct decoding of \mathbf{X}. What does Posterior decoding find?
Does it always find a syntactically correct decoding of \mathbf{X} ?

Viterbi vs. Posterior decoding

A sequence of states $\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$ where $p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N^{\prime}}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)>0$ is a legal (or syntactically correct) decoding of \mathbf{X}.

Viterbi finds the most likely syntactically correct decoding of \mathbf{X}. What does Posterior decoding find?
Does it always find a syntactically correct decoding of \mathbf{X} ?

Emits a sequence of A and Bs following either the path 12.... 2 or 13.... 3 with equal probability
I.e. Viterbi finds either $12 \ldots 2$ or 13...3, while Posterior finds that 2 and 3 are equally likely for $n>1$.

Recall: Using HMMs

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

$$
p(\mathbf{X} \mid \boldsymbol{\Theta})=\sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} \mid \boldsymbol{\Theta})=\sum_{\mathbf{z}_{N}} \alpha\left(\mathbf{z}_{N}\right)
$$

The sum has K^{N} terms, but it turns out that it can be computed in $\mathrm{O}\left(K^{2} N\right)$ time by computing the α-table using the forward algorithm and summing the last column:

$$
p(\mathbf{X})=\alpha[1][N]+\alpha[2][N]+\ldots+\alpha[K][N]
$$

Summary

- Viterbi- and Posterior decoding for finding a plausible underlying explanation (sequence of hidden states) of a sequence of observations.
- forward-backward algorithms for computing the likelihood of being in a given state in the n 'th step, and for determining the likelihood of a sequence of observations.

Viterbi

Recursion: $\omega\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \max _{\mathbf{z}_{n-1}} \omega\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis: $\omega\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)$

Forward

Recursion: $\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis: $\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)$

Backward

Recursion: $\beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right)$
Basis: $\beta\left(\mathbf{z}_{N}\right)=1$

Problem: The values in the ω-, α-, and β-tables can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points and get underflow

Next: How to implement the basic algorithms (forward, backward, and Viterbi) in a "numerically" sound manner.

Recursion: $\alpha\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{n}\right) \sum_{\mathbf{z}_{n-1}} \alpha\left(\mathbf{z}_{n-1}\right) p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)$
Basis: $\alpha\left(\mathbf{z}_{1}\right)=p\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right)=p\left(\mathbf{z}_{1}\right) p\left(\mathbf{x}_{1} \mid \mathbf{z}_{1}\right)$

Backward

Recursion: $\beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{n+1}} \beta\left(\mathbf{z}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{z}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{z}_{n}\right)$
Basis: $\beta\left(\mathbf{z}_{N}\right)=1$

