
Solutions - ML E2020 - Week 10 - Theoretical
Exercises

Graphical Models
As explained in the note Coditional probabilites and graphical, a graphical model is a graphical notation
to describe the dependency relationships when specifying a joint probility.

From graph to joint probability
Exercise 1: For the following four graphs, write down the joint probabilty of the random variables.

Solution:

From joint probability to graph

!(")!(#)!($ | ", #)

!(")!(# | ")!($ | ", #)

!(")!(# | ")!($ | ")!(% | # , $)

!() !(|) !(|)$1 ∏5
&=1 "& $& ∏5

&=2 $& $&−1

Exercise 2: Draw the following four joint probabilities as dependency graphs:

Solutions:

!(")!(#)!($)

!(")!(# | ")!($ | ")

!(")!(# | ")!($ | #)!(% | ", $)

!()!(|) !(| ,) !(|)$1 "1 $1 ∏5
&=2 "& $& "&−1 ∏5

&=2 $& $&−1

Hidden Markov Models

Exercise 3: Questions to slides Hidden Markov Models - Terminology, Representation and Basic
Problems:

1. How much time does it take to compute the joint probability in terms of and ,
where , , and is the number of hidden states in the hidden
Markov model ?

Solution:

The computation consists of multiplations of factors that we can look up in constant time, i.e.
the running time would be .

1. How many terms are there in the sum on slide 34 for computing ? Why?

Solution:

We sum over all possible sequences of hidden states , where each can have
values, so there are terms in the sum.

1. How many terms are there in the maximization on slide 38 for computing the Viterbi decoding ?
Why?

Solution:

We maximize over all possible sequences of hidden states , where each can have
 values, so there are terms in maximization.

1. How many terms are there in the maximixation on slide 39 for computing , i.e. the nth state in a
posterior decoding? Why?

Solution:

We maximize over the possible values of , so we maximize over .

' (!, "|Θ) ()
! = , … ,#1 #(" = , … ,$1 $()

Θ

*(()
*(()

' (!|Θ)

" = , … ,$1 $(+&)
) (

"∗

" = , … ,$1 $(+&
)) (

$∗,

$,)

Exercise 4: Questions to slides Hidden Markov Models - Algorithms for decoding:

1. Where in the derivation of) on slide 7 do we use that the fact that we are working with hidden
Markov models? And how do we use it?

Solution:

We use it to rewrite the joint probability as
.

1. Where in the derivation of on slide 16 do we use the fact that we are working with
hidden Markov models? And how do we use it?

Solution:

-($,

!(, … , , , … ,)#1 #, $1 $,
!() !(|) !(|)$1 ∏,

&=2 $& $&−1 ∏,
&=1 #& $&

!(| , … ,)$, #1 #(

We use it to rewrite/simplify the probability to the probability
, i.e. to remove from what we condition on. We can do this because

 and become independent when and depend on the each other as
they do in an HMM and we condition on

1. Where in the derivation of and on slide 20 and 26 do we use that the fact that we are
working with hidden Markov models? And how do we use it?

Solution:

On slide 20, we use it to rewrite the joint probability as
.

On slide 26, we use it to rewrite the joint probability
as .

1. Why is as stated on slide 31?

Solution:

.
Summing this probability over all possible values of yields . Similarly,

, and summing over all possible values of yields
.

1. Algorithmic question: Slide 35 shows how to compute from in time , i.e. the
time it takes to compute the last (rightmost) colummn in the -table. How much space do you need
to compute this column? Do you need to store the entire -table?

Solution:

In the forward algorithm, we compute column in the -table from column . If we in the end
only need access to column , then we only need to keep two columns in memory when we
compute the -table column by column from left to right, namely the current column , and the
previous column .

!(, … , | , , … ,)#,+1 #($, #1 #,
!(, … , |)#,+1 #($, , … ,)#1 #,

, … ,#1 #, , … ,#,+1 #(" $
+,

.()$, /()$,

!(, … , , , … ,)#1 #, $1 $,
!() !(|) !(|)$1 ∏,

&=2 $& $&−1 ∏,
&=1 #& $&

!(, … , , , , … ,)∑ ,…,$,+1 $(
#,+1 #($, $,+1 $(

!() !(|) !(|)∑ ,…,$,+1 $(
$, ∏(

&=,+1 $& $&−1 ∏(
&=,+1 #& $&

' (!) = .()/() = .()∑$,
$, $, ∑$(

$(

.()/() = !(, … , ,)!(, … , |) = !(, … , , , , … , ,) = !(!,)$, $, #1 #, $, #,+1 #($, #1 #, #,+1 #($, $,
) $, !(!)

.() = !(, … , ,) = !(!,)$(#1 #($($() $(
!(!)

' (!) .()$(*(()) 2

.
.

, . , − 1
(

. ,
, − 1

In []:

