Solutions - ML E2020 - Week 10 - Theoretical Exercises

Graphical Models

As explained in the note Coditional probabilites and graphical, a graphical model is a graphical notation to describe the dependency relationships when specifying a joint probility.

From graph to joint probability

Exercise 1: For the following four graphs, write down the joint probabilty of the random variables.

Solution:
$p(X) p(Y) p(Z \mid X, Y)$
$p(X) p(Y \mid X) p(Z \mid X, Y)$
$p(X) p(Y \mid X) p(Z \mid X) p(W \mid Y, Z)$
$p\left(Z_{1}\right) \prod_{i=1}^{5} p\left(X_{i} \mid Z_{i}\right) \prod_{i=2}^{5} p\left(Z_{i} \mid Z_{i-1}\right)$

From joint probability to graph

Exercise 2: Draw the following four joint probabilities as dependency graphs:
$p(X) p(Y) p(Z)$
$p(X) p(Y \mid X) p(Z \mid X)$
$p(X) p(Y \mid X) p(Z \mid Y) p(W \mid X, Z)$
$p\left(Z_{1}\right) p\left(X_{1} \mid Z_{1}\right) \prod_{i=2}^{5} p\left(X_{i} \mid Z_{i}, X_{i-1}\right) \prod_{i=2}^{5} p\left(Z_{i} \mid Z_{i-1}\right)$
Solutions:
© (\otimes (2)

Hidden Markov Models

Exercise 3: Questions to slides Hidden Markov Models - Terminology, Representation and Basic

Problems:

1. How much time does it take to compute the joint probability $P(\mathbf{X}, \mathbf{Z} \mid \Theta)$ in terms of N and K, where $\mathbf{X}=\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{Z}=\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$, and K is the number of hidden states in the hidden Markov model Θ ?

Solution:

The computation consists of $O(N)$ multiplations of factors that we can look up in constant time, i.e. the running time would be $O(N)$.

1. How many terms are there in the sum on slide 34 for computing $P(\mathbf{X} \mid \Theta)$? Why?

Solution:

We sum over all possible sequences of hidden states $\mathbf{Z}=\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$, where each z_{i} can have K values, so there are K^{N} terms in the sum.

1. How many terms are there in the maximization on slide 38 for computing the Viterbi decoding \mathbf{Z}^{*} ? Why?

Solution:

We maximize over all possible sequences of hidden states $\mathbf{Z}=\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}$, where each z_{i} can have K values, so there are K^{N} terms in maximization.

1. How many terms are there in the maximixation on slide 39 for computing \mathbf{z}_{n}^{*}, i.e. the nth state in a posterior decoding? Why?

Solution:

We maximize over the possible values of \mathbf{z}_{n}, so we maximize over K.

Exercise 4: Questions to slides Hidden Markov Models - Algorithms for decoding:

1. Where in the derivation of $\omega\left(\mathbf{z}_{n}\right)$ on slide 7 do we use that the fact that we are working with hidden Markov models? And how do we use it?

Solution:

We use it to rewrite the joint probability $p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$ as $p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right)$.

1. Where in the derivation of $p\left(\mathbf{z}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$ on slide 16 do we use the fact that we are working with hidden Markov models? And how do we use it?

Solution:

We use it to rewrite/simplify the probability $p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ to the probability $p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)$, i.e. to remove $\left.\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ from what we condition on. We can do this because $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ and $\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}$ become independent when X and Z depend on the each other as they do in an HMM and we condition on z_{n}

1. Where in the derivation of $\alpha\left(\mathbf{z}_{n}\right)$ and $\beta\left(\mathbf{z}_{n}\right)$ on slide 20 and 26 do we use that the fact that we are working with hidden Markov models? And how do we use it?

Solution:
On slide 20, we use it to rewrite the joint probability $p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$ as $p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right)$.

On slide 26, we use it to rewrite the joint probability $\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{n}, \mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}\right)$ as $\sum_{\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N}} p\left(\mathbf{z}_{n}\right) \prod_{i=n+1}^{N} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right) \prod_{i=n+1}^{N} p\left(\mathbf{x}_{i} \mid \mathbf{z}_{i}\right)$.

1. Why is $P(\mathbf{X})=\sum_{\mathbf{z}_{n}} \alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right)=\sum_{\mathbf{z}_{N}} \alpha\left(\mathbf{z}_{N}\right)$ as stated on slide 31?

Solution:

$\alpha\left(\mathbf{z}_{n}\right) \beta\left(\mathbf{z}_{n}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \mathbf{z}_{n}\right) p\left(\mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{n}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n},, \mathbf{x}_{n+1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{n}\right)=p\left(\mathbf{X}, \mathbf{z}_{n}\right)$.
Summing this probability over all K possible values of \mathbf{z}_{n} yields $p(\mathbf{X})$. Similarly,
$\alpha\left(\mathbf{z}_{N}\right)=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}, \mathbf{z}_{N}\right)=p\left(\mathbf{X}, \mathbf{z}_{N}\right)$, and summing over all K possible values of \mathbf{z}_{N} yields $p(\mathbf{X})$.

1. Algorithmic question: Slide 35 shows how to compute $P(\mathbf{X})$ from $\alpha\left(\mathbf{z}_{N}\right)$ in time $O\left(K^{2} N\right)$, i.e. the time it takes to compute the last (rightmost) colummn in the α-table. How much space do you need to compute this column? Do you need to store the entire α-table?

Solution:

In the forward algorithm, we compute column n in the α-table from column $n-1$. If we in the end only need access to column N, then we only need to keep two columns in memory when we compute the α-table column by column from left to right, namely the current column n, and the previous column $n-1$.

In []: \square

