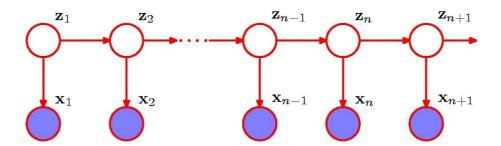
Hidden Markov Models

Implementing the forward-, backward- and Viterbi-algorithms



Viterbi

Recursion:
$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$$

Basis:
$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Forward

Recursion:
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$$

Basis:
$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Backward

Recursion:
$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

Basis:
$$\beta(\mathbf{z}_N) = 1$$

Problem: The values in the ω -, α -, and β -tables can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points and get underflow

Forward

Recursion:
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n|\mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n|\mathbf{z}_{n-1})$$

Basis:
$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Backward

Recursion:
$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

Basis:
$$\beta(\mathbf{z}_N) = 1$$

The Viterbi algorithm

 $\omega(\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1, \dots, \mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\mathbf{x}_1, \dots, \mathbf{x}_n$

$$\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$$

Recursion:

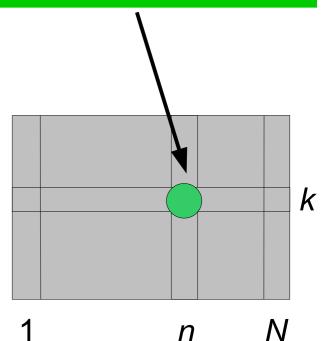
 $\omega[k][n] = \omega(\mathbf{z}_n)$ if \mathbf{z}_n is state k

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis:

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Computing ω takes time $O(K^2N)$ and space O(KN) using memorization



The Viterbi algorithm

 $\omega(\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1, ..., \mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\mathbf{x}_1, ..., \mathbf{x}_n$

Solution to underflow-problem: Because **log max f = max log f**, we can work in "log-space" which turns multiplications into additions and thus avoids too small values

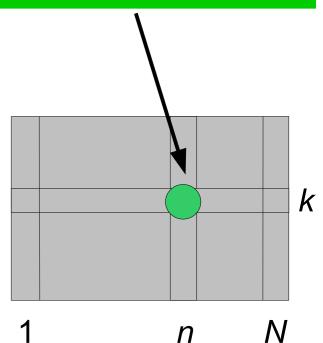
 $\omega[K][n] = \omega(\mathbf{z}_n)$ if \mathbf{z}_n is state K

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis:

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Computing ω takes time $O(K^2N)$ and space O(KN) using memorization



 $\omega(\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1, ..., \mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\mathbf{x}_1, ..., \mathbf{x}_n$

$$\log \omega(\mathbf{z}_n) = \log \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_n)$$

$$= \log (p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

$$= \log p(\mathbf{x}_n | \mathbf{z}_n) + \log (\max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

$$= \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} \log (\omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

$$= \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} (\log \omega(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

Recursion:
$$\hat{\omega}(\mathbf{z}_n) = \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} (\hat{\omega}(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

Basis:
$$\hat{\omega}(\mathbf{z}_1) = \log(p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)) = \log p(\mathbf{z}_1) + \log p(\mathbf{x}_1|\mathbf{z}_1)$$

 $\omega(\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1, ..., \mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\omega^{k}[k][n] = \omega^{k}(\mathbf{z}_n)$ if \mathbf{z}_n is state k

$$\log \omega(\mathbf{z}_n) = \log \max_{\mathbf{z}_1, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_1, \dots)$$

$$= \log(p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_n)$$

$$= \log p(\mathbf{x}_n | \mathbf{z}_n) + \log(\max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1})$$

$$= \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} \log(\omega(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

$$= \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} (\log \omega(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

Recursion:
$$\hat{\omega}(\mathbf{z}_n) = \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} (\hat{\omega}(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

Basis:
$$\hat{\omega}(\mathbf{z}_1) = \log(p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)) = \log p(\mathbf{z}_1) + \log p(\mathbf{x}_1|\mathbf{z}_1)$$

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$
$$\hat{\omega}(\mathbf{z}_n) = \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} (\hat{\omega}(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

What if $p(\mathbf{x}_n|\mathbf{z}_n)$ or $p(\mathbf{z}_n|\mathbf{z}_{n-1})$ is 0? Then the product of probabilities becomes 0, but what should it be in "log-space"?

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$
$$\hat{\omega}(\mathbf{z}_n) = \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} (\hat{\omega}(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

What if $p(\mathbf{x}_n|\mathbf{z}_n)$ or $p(\mathbf{z}_n|\mathbf{z}_{n-1})$ is 0? Then the product of probabilities becomes 0, but what should it be in "log-space"?

"log 0" should be some representation of "minus infinity"

```
// Pseudo code for computing \omega^{k}[n] for some n>1 \omega[k][n] = \text{"minus infinity"} for j=1 to K: \omega^{k}[n] = \max(\omega^{k}[n], \log(p(x[n] \mid k)) + \omega^{k}[j][n-1] + \log(p(k \mid j))
```

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$
$$\hat{\omega}(\mathbf{z}_n) = \log p(\mathbf{x}_n | \mathbf{z}_n) + \max_{\mathbf{z}_{n-1}} (\hat{\omega}(\mathbf{z}_{n-1}) + \log p(\mathbf{z}_n | \mathbf{z}_{n-1}))$$

Still takes **time** $O(K^2N)$ and **space** O(KN) using memorization, and the most likely sequence of states can be found be *backtracking*

```
// Pseudo code for computing \omega^{k}[n] for some n>1 \omega[k][n] = \text{`minus infinity''} for j=1 to K: \omega^{k}[n] = \max(\omega^{k}[n], \log(p(x[n] \mid k)) + \omega^{k}[j][n-1] + \log(p(k \mid j)))
```

Backtracking

Pseudocode for backtracking not using log-space:

```
z[1..N] = \text{undef}

z[N] = \text{arg max}_k \ \omega[k][N]

for n = N-1 to 1:

z[n] = \text{arg max}_k \ (\ p(x[n+1] \mid z[n+1]) * \omega[k][n] * p(z[n+1] \mid k\ )\ )

print z[1..N]
```

Pseudocode for backtracking using log-space:

```
z[1..N] = \text{undef}

z[N] = \text{arg max}_k \, \omega^n[k][N]

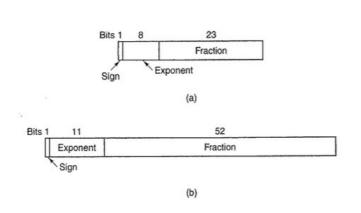
for n = N-1 to 1:

z[n] = \text{arg max}_k \, (\log p(x[n+1] \mid z[n+1]) + \omega^n[k][n] + \log p(z[n+1] \mid k))

print z[1..N]
```

Takes time O(NK) but requires the entire ω - or ω^{\wedge} -table in memory

A floating point number n is represented as $n = f * 2^e$ cf. the IEEE-754 standard which specify the range of f and e



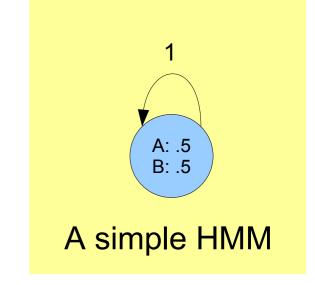
Item	Single precision	Double precision
Bits in sign	1	1
Bits in exponent	8	11
Bits in fraction	23	52
Bits, total	32	64
Exponent system	Excess †27	Excess 1023
Exponent range	-126 to +127	-1022 to +1023
Smallest normalized number	2-126	2-1022
Largest normalized number	approx. 2.128	approx. 2 ¹⁰²⁴
Decimal range	approx. 10 ⁻³⁸⁵ to 10 ³⁸	
Smallest denormalized number	approx. 100-45	approx. 10 ⁻³²⁴

Figure B-5. Characteristics of IEEE floating-point numbers.

See e.g. Appendix B in Tanenbaum's Structured Computer Organization for further details.

The Viterbi-recursion for the HMM below yields:

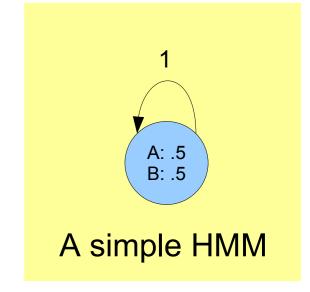
$$\omega(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{z}_{n-1}) p(\mathbf{x}_n | \mathbf{z}_n) \omega(\mathbf{z}_{n-1}) = 1 \cdot \frac{1}{2} \cdot \omega(\mathbf{z}_{n-1}) = \left(\frac{1}{2}\right)^n = 2^{-n}$$



The Viterbi-recursion for the HMM below yields:

$$\omega(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{z}_{n-1}) p(\mathbf{x}_n | \mathbf{z}_n) \omega(\mathbf{z}_{n-1}) = 1 \cdot \frac{1}{2} \cdot \omega(\mathbf{z}_{n-1}) = \left(\frac{1}{2}\right)^n = 2^{-n}$$

If n > 467 then 2^{-n} is smaller than 10^{-324} , i.e. cannot be represented



The Viterbi-recursion for the HMM below yields:

$$\omega(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{z}_{n-1}) p(\mathbf{x}_n | \mathbf{z}_n) \omega(\mathbf{z}_{n-1}) = 1 \cdot \frac{1}{2} \cdot \omega(\mathbf{z}_{n-1}) = \left(\frac{1}{2}\right)^n = 2^{-n}$$

If n > 467 then 2^{-n} is smaller than 10^{-324} , i.e. cannot be represented

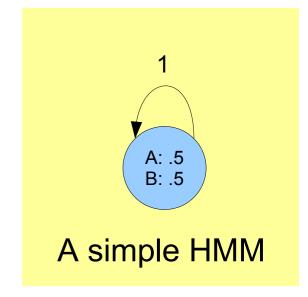
The log-transformed Viterbi-recursion for the HMM below yields:

$$\omega(\hat{\mathbf{z}}_n) = \log p(\mathbf{z}_n|\mathbf{z}_{n-1}) + \log p(\mathbf{x}_n|\mathbf{z}_n) + \omega(\hat{\mathbf{z}}_{n-1})$$

$$= \log 1 + \log \frac{1}{2} + \omega(\mathbf{z}_{n-1}) = -1 + \omega(\hat{\mathbf{z}}_{n-1})$$

$$= -n$$

No problem, as the decimal range is approx -10³⁰⁸ to 10³⁰⁸



The forward algorithm

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

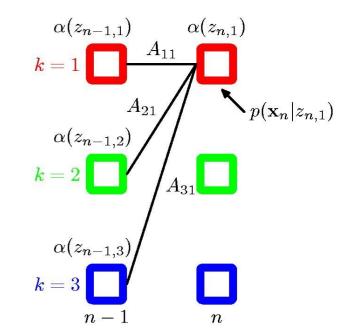
Recursion:

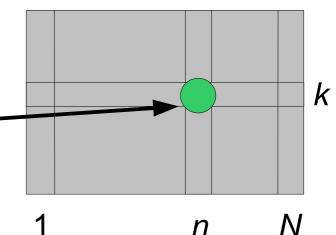
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis:

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

 $\alpha[k][n] = \alpha(\mathbf{z}_n)$ if \mathbf{z}_n is state k





The forward algorithm

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

Solution to underflow-problem: Since $log(\Sigma f) \neq \Sigma (log f)$, we cannot (immediately) use the "log-space" trick

Recursion:

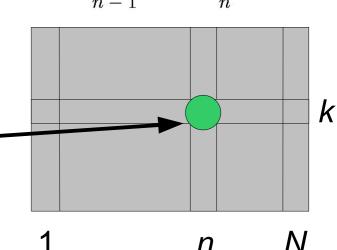
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

A_{21} $p(\mathbf{x}_n|z_{n,1})$ k=2 A_{31} $a(z_{n-1,3})$ k=3 n-1

Basis:

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

 $\alpha[k][n] = \alpha(\mathbf{z}_n)$ if \mathbf{z}_n is state k



The forward algorithm

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

Solution to underflow-problem: Since $\log (\Sigma f) \neq \Sigma (\log f)$, we cannot (immediately) use the "log-space" trick.

We instead use scaling such that values do not (all) become too small

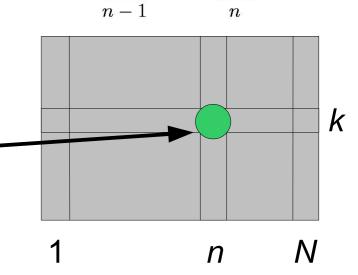
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

$$k = 3$$

Basis:

$$\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

 $\alpha[k][n] = \alpha(\mathbf{z}_n)$ if \mathbf{z}_n is state k



 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n) = p(\mathbf{x}_1, \dots, \mathbf{x}_n) p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_n)$$

$$\hat{\alpha}(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \frac{\alpha(\mathbf{z}_n)}{p(\mathbf{x}_1, \dots, \mathbf{x}_n)} = \frac{\alpha(\mathbf{z}_n)}{\prod_{m=1}^n c_m}$$

$$c_n = p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1}) \qquad p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{m=1}^n c_m$$

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n) = p(\mathbf{x}_1, \dots, \mathbf{x}_n) p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_n)$$

$$\hat{\alpha}(\mathbf{z}_n) = p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_n) = \frac{\alpha(\mathbf{z}_n)}{p(\mathbf{x}_1, \dots, \mathbf{x}_n)} = \frac{\alpha(\mathbf{z}_n)}{\prod_{m=1}^n c_m}$$

$$c_n = p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1})$$
 $p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \prod_{m=1}^{n} c_m$

This "normalized version" of $\alpha(\mathbf{z}_n)$ is a probability distribution over K outcomes, and we expect it to "behave numerically well" because

$$\sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = 1$$

The normalized values can not all become arbitrary small ...

We can modify the forward-recursion to use scaled values

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \Leftrightarrow$$

$$\left(\prod_{m=1}^n c_m\right) \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \left(\prod_{m=1}^{n-1} c_m\right) \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \Leftrightarrow$$

$$c_n \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

$$\alpha(\mathbf{z}_n) = \left(\prod_{m=1}^n c_m\right) \hat{\alpha}(\mathbf{z}_n)$$

We can modify the forward-recursion to use scaled values

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \Leftrightarrow$$

$$\left(\prod_{m=1}^n c_m\right) \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \left(\prod_{m=1}^{n-1} c_m\right) \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \Leftrightarrow$$

$$c_n \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

If we know c_n then we have a recursion using the normalized values

$$\alpha(\mathbf{z}_n) = \left(\prod_{m=1}^n c_m\right) \hat{\alpha}(\mathbf{z}_n)$$

We can modify the forward-recursion to use scaled values

$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \Leftrightarrow$$

$$\left(\prod_{m=1}^n c_m\right) \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \left(\prod_{m=1}^{n-1} c_m\right) \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1}) \Leftrightarrow$$

$$c_n \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

If we know c_n then we have a recursion using the normalized values

$$\sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n \cdot 1$$

$$\alpha(\mathbf{z}_n) = \left(\prod_{m=1}^n c_m\right) \hat{\alpha}(\mathbf{z}_n)$$

We can modify the forward-recursion to use scaled values

Recursion:

In step *n* compute and store temporarily the *K* values $\delta(z_{n1})$, ..., $\delta(z_{nK})$

$$\delta(\mathbf{z}_n) = c_n \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Compute and store c, as

$$\sum_{k=1}^{K} \delta(z_{nk}) = \sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n$$

Compute and store $\hat{\alpha}(z_{nk}) = \delta(z_{nk})/c_n$

Forward algorithm usi

 $\alpha^{n}[k][n] = \alpha^{n}(\mathbf{z}_{n})$ if \mathbf{z}_{n} is state k

n

We can modify the forward-recursion to

Recursion:

In step *n* compute and store temporaril

$$\delta(\mathbf{z}_n) = c_n \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Compute and store c, as

$$\sum_{k=1}^{K} \delta(z_{nk}) = \sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n$$

Compute and store $\hat{\alpha}(z_{nk}) = \delta(z_{nk})/c_n$

Basis:

$$\hat{\alpha}(\mathbf{z}_1) = \frac{\alpha(\mathbf{z}_1)}{c_1} \qquad c_1 = p(\mathbf{x}_1) = \sum_{\mathbf{z}_1} p(\mathbf{z}_1) p(\mathbf{x}_1 | \mathbf{z}_1) = \sum_{k=1}^K \pi_k p(\mathbf{x}_1 | \phi_k)$$

Forward algorithm usi

 $\alpha^{k}[n] = \alpha^{k}(\boldsymbol{z}_{n})$ if \boldsymbol{z}_{n} is state k

We can modify the forward-recursion to

Recursion:

In step *n* compute and store temporaril

$$\delta(\mathbf{z}_n) = c_n \hat{\alpha}(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \hat{\alpha}(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Compute and store c, as

$$\sum_{k=1}^{K} \delta(z_{nk}) = \sum_{k=1}^{K} c_n \hat{\alpha}(z_{nk}) = c_n \sum_{k=1}^{K} \hat{\alpha}(z_{nk}) = c_n$$

Compute and store $\hat{\alpha}(z_{nk}) = \delta(z_{nk})/c_n$

Takes time $O(K^2N)$ and space O(KN) using memorization

n

Basis:

$$\hat{\alpha}(\mathbf{z}_1) = \frac{\alpha(\mathbf{z}_1)}{c_1} \qquad c_1 = p(\mathbf{x}_1) = \sum_{\mathbf{z}_1} p(\mathbf{z}_1) p(\mathbf{x}_1 | \mathbf{z}_1) = \sum_{k=1}^K \pi_k p(\mathbf{x}_1 | \phi_k)$$

The Backward Algorithm

 $\beta(\mathbf{z}_n)$ is the conditional probability of future observation $\mathbf{x}_{n+1},...,\mathbf{x}_N$ assuming being in state \mathbf{z}_n

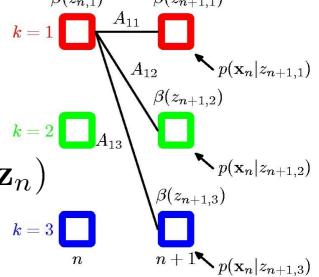
$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

Recursion:

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

Basis:

$$\beta(\mathbf{z}_N) = 1$$



$$\hat{\beta}(\mathbf{z}_n) = \frac{\beta(\mathbf{z}_n)}{\prod_{m=n+1}^N c_m} = \frac{p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)}{p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{x}_1, \dots, \mathbf{x}_n)}$$

We can modify the backward-recursion to use scaled values

$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n) \Leftrightarrow$$

$$\left(\prod_{m=n+1}^{N} c_m\right) \hat{\beta}(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \left(\prod_{m=n+2}^{N} c_m\right) \hat{\beta}(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n) \Leftrightarrow$$

$$c_{n+1} \hat{\beta}(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \hat{\beta}(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

We can modify the backward-recursion to use scaled values

Recursion:

In step *n* compute and store temporarily the *K* values $\varepsilon(z_{n1})$, ..., $\varepsilon(z_{nK})$

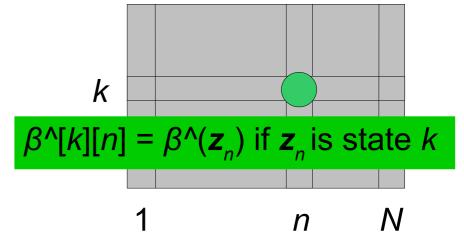
$$\epsilon(\mathbf{z}_n) = c_{n+1}\hat{\beta}(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \hat{\beta}(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1}|\mathbf{z}_{n+1}) p(\mathbf{z}_{n+1}|\mathbf{z}_n)$$

Using c_{n+1} computed during the forward-recursion, compute and store

$$\hat{\beta}(z_{nk}) = \epsilon(z_{nk})/c_{n+1}$$

Basis:

$$\hat{\beta}(\mathbf{z}_N) = 1$$



Posterior decoding - Revisited

Given **X**, find **Z***, where $\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$ is the most likely state to be in the *n*'th step.

$$p(\mathbf{z}_{n}|\mathbf{x}_{1},...,\mathbf{x}_{N}) = \frac{p(\mathbf{z}_{n},\mathbf{x}_{1},...,\mathbf{x}_{N})}{p(\mathbf{x}_{1},...,\mathbf{x}_{N})}$$

$$= \frac{p(\mathbf{x}_{1},...,\mathbf{x}_{n},\mathbf{z}_{n})p(\mathbf{x}_{n+1},...,\mathbf{x}_{N}|\mathbf{z}_{n})}{p(\mathbf{x}_{1},...,\mathbf{x}_{N})}$$

$$= \frac{\alpha(\mathbf{z}_{n})\beta(\mathbf{z}_{n})}{p(\mathbf{X})}$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

Posterior decoding - Revisited

Given **X**, find **Z***, where $\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$ is the most likely state to be in the *n*'th step.

$$p(\mathbf{z}_{n}|\mathbf{x}_{1},...,\mathbf{x}_{N}) = \frac{\alpha(\mathbf{z}_{n})\beta(\mathbf{z}_{n})}{p(\mathbf{X})}$$

$$= \frac{\hat{\alpha}(\mathbf{z}_{n}) \left(\prod_{m=1}^{n} c_{m}\right) \hat{\beta}(\mathbf{z}_{n}) \left(\prod_{m=n+1}^{N} c_{m}\right)}{\left(\prod_{m=1}^{N} c_{m}\right)}$$

$$= \hat{\alpha}(\mathbf{z}_{n}) \hat{\beta}(\mathbf{z}_{n})$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \hat{\alpha}(\mathbf{z}_n) \hat{\beta}(\mathbf{z}_n)$$

Summary

- Implementing the Viterbi- and Posterior decoding in a "numerically" sound manner.
- Next: How to "build" an HMM, i.e. determining the number of observables (D), the number of hidden states (K) and the transition- and emission-probabilities.