Hidden Markov Models Algorithms for decoding

HMM joint probability distribution

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\Theta}) = p(\mathbf{z}_1 | \pi) \left[\prod_{n=2}^{N} p(\mathbf{z}_n | \mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n | \mathbf{z}_n, \phi)$$

If A and **\phi** are the same for all *n* then the HMM is *homogeneous*

Decoding using HMMs

Given a HMM Θ and a sequence of observations $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$, find a plausible explanation, i.e. a sequence $\mathbf{Z}^* = \mathbf{z}^*_{1}, ..., \mathbf{z}^*_{N}$ of values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = rg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta})$$

Posterior decoding

 \mathbf{z}_{n}^{*} is the most likely state to be in the *n*'th step: $\mathbf{z}_{n}^{*} = \arg \max_{\mathbf{z}_{n}} p(\mathbf{z}_{n} | \mathbf{x}_{1}, \dots, \mathbf{x}_{N})$

Viterbi decoding

Given X, find Z* such that: $\mathbf{Z}^* = \arg \max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\Theta})$

$$p(\mathbf{X}, \mathbf{Z}^*) = \max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_N} p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N)$$
$$= \max_{\mathbf{z}_N} \max_{\mathbf{z}_1, \dots, \mathbf{z}_{N-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N)$$
$$= \max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

$$\mathbf{z}_N^* = \arg \max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

Where $\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1,...,\mathbf{z}_{n-1}} p(\mathbf{x}_1,...,\mathbf{x}_n,\mathbf{z}_1,...,\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1,...,\mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\mathbf{x}_1,...,\mathbf{x}_n$

Viterbi decoding

Given X, find Z* such that: $\mathbf{Z}^* = \arg \max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\Theta})$

$$p(\mathbf{X}, \mathbf{Z}^*) = \max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}) = \max_{\mathbf{z}_1, \dots, \mathbf{z}_N} \omega[k][n] = \omega(\mathbf{z}_n) \text{ if } \mathbf{z}_n \text{ is state } k$$

$$= \max_{\mathbf{z}_N} \max_{\mathbf{z}_1, \dots, \mathbf{z}_{N-1}} p(\mathbf{x}_1, \dots, \mathbf{x}_N)$$

$$= \max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

$$\mathbf{z}_N^* = \arg\max_{\mathbf{z}_N} \omega(\mathbf{z}_N)$$

$$1 \qquad n \qquad N$$

Where $\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1,...,\mathbf{z}_{n-1}} p(\mathbf{x}_1,...,\mathbf{x}_n,\mathbf{z}_1,...,\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1,...,\mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\mathbf{x}_1,...,\mathbf{x}_n$

$$\begin{split} \omega(\mathbf{z}_{n}) &= \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{x}_{1},...,\mathbf{x}_{n},\mathbf{z}_{1},...,\mathbf{z}_{n}) \\ &= \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-2}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-2}} p(\mathbf{z}_{1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-2}} p(\mathbf{z}_{1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \omega(\mathbf{z}_{n-1}) \end{split}$$

$$\begin{split} \omega(\mathbf{z}_{n}) &= \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{x}_{1},...,\mathbf{x}_{n},\mathbf{z}_{1},...,\mathbf{z}_{n}) \\ &= \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-1}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-2}} p(\mathbf{z}_{1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \max_{\mathbf{z}_{1},...,\mathbf{z}_{n-2}} p(\mathbf{z}_{1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i}|\mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i}|\mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n}|\mathbf{z}_{n}) \max_{\mathbf{z}_{n-1}} p(\mathbf{z}_{n}|\mathbf{z}_{n-1}) \omega(\mathbf{z}_{n-1}) \end{split}$$

 $\omega(\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1, \dots, \mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\mathbf{x}_1, \dots, \mathbf{x}_n$

$$\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1,\dots,\mathbf{z}_{n-1}} p(\mathbf{x}_1,\dots,\mathbf{x}_n,\mathbf{z}_1,\dots,\mathbf{z}_n)$$

Recursion:

 $\omega[k][n] = \omega(\mathbf{z}_n)$ if \mathbf{z}_n is state k

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis:

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

n

// Pseudo code for computing $\omega[k][n]$ for some n>1

 $\omega[k][n]=0$

for *j* = 1 to *K*:

 $\omega[k][n] = \max(\ \omega[k][n], p(\mathbf{x}[n] \mid k) * \omega[j][n-1] * p(k \mid j))$

$$\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1,\dots,\mathbf{z}_{n-1}} p(\mathbf{x}_1,\dots,\mathbf{x}_n,\mathbf{z}_1,\dots,\mathbf{z}_n)$$

Recursion:

 $\omega[k][n] = \omega(\mathbf{z}_n)$ if \mathbf{z}_n is state k

of states $\mathbf{z}_1, \dots, \mathbf{z}_n$

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis:

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

n

N

// Pseudo code for computing $\omega[k][n]$ for some n>1

 $\omega[k][n]=0$

for *j* = 1 to *K*:

 $\omega[k][n] = \max(\ \omega[k][n], p(\mathbf{x}[n] \mid k) * \omega[j][n-1] * p(k \mid j))$

$$\omega(\mathbf{z}_n) \equiv \max_{\mathbf{z}_1,\dots,\mathbf{z}_{n-1}} p(\mathbf{x}_1,\dots,\mathbf{x}_n,\mathbf{z}_1,\dots,\mathbf{z}_n)$$

Recursion:

 $\omega[k][n] = \omega(\mathbf{z}_n)$ if \mathbf{z}_n is state k

of states $\mathbf{z}_1, \dots, \mathbf{z}_n$

$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis:

$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Computing ω takes time $O(K^2N)$ and **space O(KN)** using memorization

Viterbi decoding – Retrieving Z*

 $\omega(\mathbf{z}_n)$ is the probability of the most likely sequence of states $\mathbf{z}_1, \dots, \mathbf{z}_n$ ending in \mathbf{z}_n generating the observations $\mathbf{x}_1, \dots, \mathbf{x}_n$. We find \mathbf{Z}^* by backtracking:

$$\mathbf{z}_{N}^{*} = \arg \max_{\mathbf{z}_{N}} \omega(\mathbf{z}_{N}) = \arg \max_{\mathbf{z}_{N}} \max_{\mathbf{z}_{N-1}} \left(p(\mathbf{x}_{N} | \mathbf{z}_{N}) \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_{N} | \mathbf{z}_{N-1}) \right)$$
$$\mathbf{z}_{N-1}^{*} = \arg \max_{\mathbf{z}_{N-1}} \left(p(\mathbf{x}_{N} | \mathbf{z}_{N}^{*}) \omega(\mathbf{z}_{N-1}) p(\mathbf{z}_{N}^{*} | \mathbf{z}_{N-1}) \right)$$


```
ving Z*
// Pseudocode for backtracking
z[1..N] = undef
z[N] = \arg \max_{k} \omega[k][N]
for n = N-1 to 1:
     z[n] = \arg \max_{k} (p(x[n+1] | z[n+1]))
print z[1..N]
```

•

$$\mathbf{z}_{N}^{*} = \arg \max_{\mathbf{z}_{N}} \omega(\mathbf{z}_{N}) = \arg \max_{\mathbf{z}_{N}} \max_{\mathbf{z}_{N-1}} \left(p(\mathbf{x}_{N} | \mathbf{z}_{N}) \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_{N} | \mathbf{z}_{N-1}) \right)$$
$$\mathbf{z}_{N-1}^{*} = \arg \max_{\mathbf{z}_{N-1}} \left(p(\mathbf{x}_{N} | \mathbf{z}_{N}^{*}) \omega(\mathbf{z}_{N-1}) p(\mathbf{z}_{N}^{*} | \mathbf{z}_{N-1}) \right)$$

// Pseudocode for backtracking z[1..N] = undef $z[N] = arg \max_k \omega[k][N]$ for n = N-1 to 1: $z[n] = arg \max_k (p(x[n+1] | z[n+1]) * \omega[k][n] * p(z[n+1] | k)))$ print z[1..N]int z[1..N]

int z[1..N]

$$\mathbf{z}_{N}^{*} = \arg \max_{\mathbf{z}_{N}} \omega(\mathbf{z}_{N}) = \arg \max_{\mathbf{z}_{N}} \max_{\mathbf{z}_{N-1}} \left(p(\mathbf{x}_{N} | \mathbf{z}_{N}) \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_{N} | \mathbf{z}_{N-1}) \right)$$
$$\mathbf{z}_{N-1}^{*} = \arg \max_{\mathbf{z}_{N-1}} \left(p(\mathbf{x}_{N} | \mathbf{z}_{N}^{*}) \omega(\mathbf{z}_{N-1}) p(\mathbf{z}_{N}^{*} | \mathbf{z}_{N-1}) \right)$$
$$\vdots$$

k

N

n

Backtracking takes time O(KN) and space O(KN) using ω

$$\omega[k][n] = \omega(\mathbf{z}_n)$$
 if \mathbf{z}_n is state k

Decoding using HMMs

Given a HMM Θ and a sequence of observations $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$, find a plausible explanation, i.e. a sequence $\mathbf{Z}^* = \mathbf{z}^*_{1}, ..., \mathbf{z}^*_{N}$ of values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = rg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta})$$

Posterior decoding

 \mathbf{z}_{n}^{*} is the most likely state to be in the *n*'th step: $\mathbf{z}_{n}^{*} = \arg \max_{\mathbf{z}_{n}} p(\mathbf{z}_{n} | \mathbf{x}_{1}, \dots, \mathbf{x}_{N})$

Given X, find Z*, where $\mathbf{z}_n^* = \arg \max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$ is the most likely state to be in the *n*'th step.

$$p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \frac{p(\mathbf{z}_n, \mathbf{x}_1, \dots, \mathbf{x}_N)}{p(\mathbf{x}_1, \dots, \mathbf{x}_N)}$$
$$= \frac{p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n) p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)}{p(\mathbf{x}_1, \dots, \mathbf{x}_N)}$$
$$= \frac{\alpha(\mathbf{z}_n) \beta(\mathbf{z}_n)}{p(\mathbf{X})}$$

$$\mathbf{z}_n^* = \arg \max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg \max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\beta(\mathbf{z}_n)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \dots, \mathbf{x}_N$ assuming being in state \mathbf{z}_{n}

IN

k

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

$$\alpha[k][n] = \alpha(\mathbf{z}_n) \text{ if } \mathbf{z}_n \text{ is state } k$$

$$\beta[k][n] = \beta(\mathbf{z}_n) \text{ if } \mathbf{z}_n \text{ is state } k$$

$$k = \frac{1}{1 + n} \frac{n + N}{N}$$

n

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\beta(\mathbf{z}_n)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \dots, \mathbf{x}_N$ assuming being in state \mathbf{z}_n

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

Using $\alpha(\mathbf{z}_n)$ and $\beta(\mathbf{z}_n)$ we get the likelihood of the observations as:

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) \qquad p(\mathbf{X}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

The α-recursion

$$\begin{aligned} \alpha(\mathbf{z}_{n}) &= p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{n-2}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{n-1}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \alpha(\mathbf{z}_{n-1}) \end{aligned}$$

The α-recursion

$$\begin{aligned} \alpha(\mathbf{z}_{n}) &= p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) \prod_{i=2}^{n} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-1}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{n-2}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \sum_{\mathbf{z}_{1}, \dots, \mathbf{z}_{n-2}} p(\mathbf{z}_{1}) \prod_{i=2}^{n-1} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=1}^{n-1} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}, \mathbf{z}_{n-1}} p(\mathbf{z}_{n} | \mathbf{z}_{n-1}) \alpha(\mathbf{z}_{n-1}) \end{aligned}$$

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_{n}) \equiv p(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{z}_{n})$$
Recursion:

$$\alpha(\mathbf{z}_{n}) = p(\mathbf{x}_{n} | \mathbf{z}_{n}) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_{n} | \mathbf{z}_{n-1})$$
Basis:

$$\alpha(\mathbf{z}_{1}) = p(\mathbf{x}_{1}, \mathbf{z}_{1}) = p(\mathbf{z}_{1}) p(\mathbf{x}_{1} | \mathbf{z}_{1})$$

$$\alpha(\mathbf{z}_{n}) = p(\mathbf{x}_{n}, \mathbf{z}_{n}) = p(\mathbf{z}_{n}) p(\mathbf{x}_{n} | \mathbf{z}_{n})$$

$$\alpha(\mathbf{z}_{n}) = p(\mathbf{x}_{n}, \mathbf{z}_{n}) = p(\mathbf{z}_{n}) p(\mathbf{x}_{n} | \mathbf{z}_{n})$$

The backward algorithm

 $\beta(\mathbf{z}_n)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \dots, \mathbf{x}_N$ assuming being in state \mathbf{z}_n

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

The β -recursion

$$\begin{split} \beta(\mathbf{z}_{n}) &= p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N} | \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N}, \mathbf{z}_{n+1}, \dots, \mathbf{z}_{N} | \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N}, \mathbf{z}_{n}, \mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}) / p(\mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{z}_{n}) \prod_{i=n+1}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+1}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) / p(\mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} \prod_{i=n+1}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+1}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \prod_{i=n+2}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+2}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \sum_{\mathbf{z}_{n+2}, \dots, \mathbf{z}_{N}} \prod_{i=n+2}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+2}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{x}_{n+2}, \dots, \mathbf{x}_{N} | \mathbf{z}_{n+1}) \\ &= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \beta(\mathbf{z}_{n+1}) \end{split}$$

The β-recursion

$$\begin{aligned} \beta(\mathbf{z}_{n}) &= p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N} | \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N}, \mathbf{z}_{n+1}, \dots, \mathbf{z}_{N} | \mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_{N}, \mathbf{z}_{n}, \mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}) / p(\mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}, \dots, \mathbf{z}_{N}} p(\mathbf{z}_{n}) \prod_{i=n+1}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+1}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) / p(\mathbf{z}_{n}) \\ &= \sum_{\mathbf{z}_{n+1}} \sum_{\mathbf{z}_{n+2}, \dots, \mathbf{z}_{N}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \prod_{i=n+2}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+2}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \sum_{\mathbf{z}_{n+2}, \dots, \mathbf{z}_{N}} \prod_{i=n+2}^{N} p(\mathbf{z}_{i} | \mathbf{z}_{i-1}) \prod_{i=n+2}^{N} p(\mathbf{x}_{i} | \mathbf{z}_{i}) \\ &= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{x}_{n+2}, \dots, \mathbf{x}_{N} | \mathbf{z}_{n+1}) \\ &= \sum_{\mathbf{z}_{n+1}} p(\mathbf{z}_{n+1} | \mathbf{z}_{n}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) \beta(\mathbf{z}_{n+1}) \end{aligned}$$

The backward algorithm

 $\beta(\mathbf{z}_n)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \dots, \mathbf{x}_N$ assuming being in state \mathbf{z}_n

 $\alpha(\mathbf{z}_n)$ is the joint probability of observing $\mathbf{x}_1, \dots, \mathbf{x}_n$ and being in state \mathbf{z}_n

$$\alpha(\mathbf{z}_n) \equiv p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}_n)$$

 $\beta(\mathbf{z}_n)$ is the conditional probability of future observation $\mathbf{x}_{n+1}, \dots, \mathbf{x}_N$ assuming being in state \mathbf{z}_n

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

Using $\alpha(\mathbf{z}_n)$ and $\beta(\mathbf{z}_n)$ we get the likelihood of the observations as:

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) \qquad p(\mathbf{X}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$$

$$\beta(\mathbf{z}_n) \equiv p(\mathbf{x}_{n+1}, \dots, \mathbf{x}_N | \mathbf{z}_n)$$

Using $\alpha(\mathbf{z}_n)$ and $\beta(\mathbf{z}_n)$ we get the likelihood of the observations as:

$$p(\mathbf{X}) = \sum_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) \qquad p(\mathbf{X}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

 $\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N) = \arg\max_{\mathbf{z}_n} \alpha(\mathbf{z}_n) \beta(\mathbf{z}_n) / p(\mathbf{X})$

Viterbi vs. Posterior decoding

A sequence of states $\mathbf{z}_1, \dots, \mathbf{z}_N$ where $p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N) > 0$ is a legal (or syntactically correct) decoding of **X**.

Viterbi finds the most likely syntactically correct decoding of **X**. What does Posterior decoding find?

Does it always find a syntactically correct decoding of **X**?

Viterbi vs. Posterior decoding

A sequence of states $\mathbf{z}_1, \dots, \mathbf{z}_N$ where $p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N) > 0$ is a legal (or syntactically correct) decoding of **X**.

Viterbi finds the most likely syntactically correct decoding of **X**. What does Posterior decoding find?

Does it always find a syntactically correct decoding of **X**?

Emits a sequence of A and Bs following either the path 12....2 or 13....3 with equal probability

I.e. Viterbi finds either 12...2 or 13...3, while Posterior finds that 2 and 3 are equally likely for n>1.

Recall: Using HMMs

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

$$p(\mathbf{X}|\mathbf{\Theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = \sum_{\mathbf{z}_N} \alpha(\mathbf{z}_N)$$

The sum has K^N terms, but it turns out that it can be computed in $O(K^2N)$ time by computing the α -table using the forward algorithm and summing the last column:

 $p(\mathbf{X}) = \alpha[1][N] + \alpha[2][N] + \dots + \alpha[K][N]$

Summary

- Viterbi- and Posterior decoding for finding a plausible underlying explanation (sequence of hidden states) of a sequence of observation
- forward-backward algorithms for computing the likelihood of being in a given state in the *n*'th step, and for determining the likelihood of a sequence of observations.

Viterbi

Recursion:
$$\omega(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \max_{\mathbf{z}_{n-1}} \omega(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis:
$$\omega(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1)p(\mathbf{x}_1|\mathbf{z}_1)$$

Forward

Recursion:
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis: $\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1) p(\mathbf{x}_1 | \mathbf{z}_1)$

Backward

Recursion:
$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

Basis: $\beta(\mathbf{z}_N) = 1$

Problem: The values in the ω -, α -, and β -tables can come very close to zero, by multiplying them we potentially exceed the precision of double precision floating points and get underflow

Next: How to implement the basic algorithms (forward, backward, and Viterbi) in a "numerically" sound manner.

Recursion:
$$\alpha(\mathbf{z}_n) = p(\mathbf{x}_n | \mathbf{z}_n) \sum_{\mathbf{z}_{n-1}} \alpha(\mathbf{z}_{n-1}) p(\mathbf{z}_n | \mathbf{z}_{n-1})$$

Basis: $\alpha(\mathbf{z}_1) = p(\mathbf{x}_1, \mathbf{z}_1) = p(\mathbf{z}_1) p(\mathbf{x}_1 | \mathbf{z}_1)$

Backward

Recursion:
$$\beta(\mathbf{z}_n) = \sum_{\mathbf{z}_{n+1}} \beta(\mathbf{z}_{n+1}) p(\mathbf{x}_{n+1} | \mathbf{z}_{n+1}) p(\mathbf{z}_{n+1} | \mathbf{z}_n)$$

Basis: $\beta(\mathbf{z}_N) = 1$