
Hidden Markov Models
Algorithms for decoding



HMM joint probability distribution

If A and Ф are the same for all n then the HMM is homogeneous

Observables: Latent states: Model parameters:



Decoding using HMMs
Given a HMM Θ and a sequence of observations X = x

1
,...,x

N 
, 

find a plausible explanation, i.e. a sequence Z* = z*
1
,...,z*

N 
of 

values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of X:

Posterior decoding

z*
n 
is the most likely state to be in the n'th step:



Viterbi decoding

Where                                                                     is the probability 

of the most likely sequence of states z
1
,...,z

n 
ending in z

n 
generating 

the observations x
1
,...,x

n 

Given X, find Z* such that:



Viterbi decoding

Where                                                                     is the probability 

of the most likely sequence of states z
1
,...,z

n 
ending in z

n 
generating 

the observations x
1
,...,x

n 

Given X, find Z* such that:

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N



The ω-recursion



The ω-recursion



Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 

The ω-recursion

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N



Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 

The ω-recursion

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N

// Pseudo code for computing ω[k][n] for some n>1

ω[k][n] = 0

for j = 1 to K:

ω[k][n] = max( ω[k][n], p(x[n] | k) * ω[ j ][n-1] * p( k | j) )



Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 

The ω-recursion

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N

Computing ω takes time O(K2N) and 

space O(KN) using memorization

// Pseudo code for computing ω[k][n] for some n>1

ω[k][n] = 0

for j = 1 to K:

ω[k][n] = max( ω[k][n], p(x[n] | k) * ω[ j ][n-1] * p( k | j) )



ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 
. We find Z* by 

backtracking:
 

Viterbi decoding – Retrieving Z* 

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N



ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 
. We find Z* by 

backtracking:
 

Viterbi decoding – Retrieving Z* 

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N

// Pseudocode for backtracking

z[1..N] = undef

z[N] = arg max
k
 ω[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 ( p(x[n+1] | z[n+1]) * ω[k][n] * p(z[n+1] | k ) )

print z[1..N]



ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n 

ending in z
n 
generating the observations x

1
,...,x

n 
. We find Z* by 

backtracking:
 

Viterbi decoding – Retrieving Z* 

n

k

ω[k][n] = ω(z
n
) if z

n 
is state k 

1 N

Backtracking takes time O(KN) and 

space O(KN) using ω

// Pseudocode for backtracking

z[1..N] = undef

z[N] = arg max
k
 ω[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 ( p(x[n+1] | z[n+1]) * ω[k][n] * p(z[n+1] | k ) )

print z[1..N]



Decoding using HMMs
Given a HMM Θ and a sequence of observations X = x

1
,...,x

N 
, 

find a plausible explanation, i.e. a sequence Z* = z*
1
,...,z*

N 
of 

values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of X:

Posterior decoding

z*
n 
is the most likely state to be in the n'th step:



Posterior decoding

Given X, find Z*, where 

 
is the most likely state to be in the n'th step.



Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

n

k

1 N

α[k][n] = α(z
n
) if z

n 
is state k 

n

k

1 N

β[k][n] = β(z
n
) if z

n 
is state k 



Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

Using α(z
n
) and β(z

n
) we get the likelihood of the observations as:



The forward algorithm

n

k

1 N

α[k][n] = α(z
n
) if z

n 
is state k 

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n



The α-recursion



The α-recursion



The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

Recursion:

Basis:

n

k

α[k][n] = α(z
n
) if z

n 
is state k 

1 N



The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

Recursion:

Basis:

// Pseudo code for computing α[k][n] for some n>1

α[k][n] = 0

for j = 1 to K:

α[k][n] = α[k][n] + p(x[n] | k) * α[ j ][n-1] * p( k | j)

n

k

α[k][n] = α(z
n
) if z

n 
is state k 

1 N



n

k

α[k][n] = α(z
n
) if z

n 
is state k 

1 N

The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

Recursion:

Basis:

Computing α takes time O(K2N) and 

space O(KN) using memorization

// Pseudo code for computing α[k][n] for some n>1

α[k][n] = 0

for j = 1 to K:

α[k][n] = α[k][n] + p(x[n] | k) * α[ j ][n-1] * p( k | j)



The backward algorithm

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

n

k

1 N

β[k][n] = β(z
n
) if z

n 
is state k 



The β-recursion



The β-recursion



The backward algorithm

Recursion:

Basis:

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

n

k

β[k][n] = β(z
n
) if z

n 
is state k 

1 N



The backward algorithm

Recursion:

Basis:

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

// Pseudo code for computing β[k][n] for some n<N

β[k][n] = 0

for j = 1 to K:

β[k][n] = β[k][n] + p( j | k) * p(x[n+1] | j) * β[ j ][n+1]

n

k

β[k][n] = β(z
n
) if z

n 
is state k 

1 N



n

k

β[k][n] = β(z
n
) if z

n 
is state k 

1 N

The backward algorithm

Recursion:

Basis:

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

Computing β takes time O(K2N) and 

space O(KN) using memorization

// Pseudo code for computing β[k][n] for some n<N

β[k][n] = 0

for j = 1 to K:

β[k][n] = β[k][n] + p( j | k) * p(x[n+1] | j) * β[ j ][n+1]



Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

Using α(z
n
) and β(z

n
) we get the likelihood of the observations as:



Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n 
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N
 

assuming being in state z
n
  

Using α(z
n
) and β(z

n
) we get the likelihood of the observations as:

// Pseudocode for posterior decoding

Compute α[1..K][1..N] and β[1..K][1..N]

pX =  α[1][N] + α[2][N] + … + α[K][N]

z[1..N] = undef

for n = 1 to N:
 z[n] = arg max

k
 ( α[k][n] * β[k][n] / pX )

print z[1..N]



Viterbi vs. Posterior decoding

A sequence of states z
1
,...,z

N
 where p(x

1
,...,x

N
, z

1
,...,z

N
) > 0 is a 

legal (or syntactically correct) decoding of X.

Viterbi finds the most likely syntactically correct decoding of X.

What does Posterior decoding find? 

Does it always find a syntactically correct decoding of X?



Viterbi vs. Posterior decoding

A sequence of states z
1
,...,z

N
 where p(x

1
,...,x

N
, z

1
,...,z

N
) > 0 is a 

legal (or syntactically correct) decoding of X.

Viterbi finds the most likely syntactically correct decoding of X.

What does Posterior decoding find? 

Does it always find a syntactically correct decoding of X?

Viterbi vs. Posterior decoding

A sequence of states z
1
,...,z

N
 where P(x

1
,...,x

N
, z

1
,...,z

N
) > 0 is a 

legal (or syntactically correct) decoding of X.

A:.5
B:.5

A:.5
B:.5

A:.5
B:.5

1

2

3

1

11/2

1/2
Emits a sequence of A and Bs fol-
lowing either the path 12....2 or 
13....3 with equal probability

I.e. Viterbi finds either 12...2 or 
13...3, while Posterior finds that 2 
and 3 are equally likely for n>1.



 Determine the likelihood of a  sequence of 
observations.

 Find a plausible underlying explanation (or 
decoding) of a sequence of observations.

Recall: Using HMMs

The sum has KN terms, but it turns out that it  can be computed 
in O(K2N) time by computing the α-table using the forward 
algorithm and summing the last column:

p(X) = α[1][N] + α[2][N] + … + α[K][N]



Summary

 Viterbi- and Posterior decoding for finding a 
plausible underlying explanation (sequence of 
hidden states) of a sequence of observation

 forward-backward algorithms for computing 
the likelihood of being in a given state in the 
n'th step, and for determining the likelihood of a 
sequence of observations.



Recursion:

Basis:

Recursion:

Basis:

Recursion:

Basis:

Viterbi

Forward

Backward



Recursion:

Basis:

Recursion:

Basis:

Recursion:

Basis:

Viterbi

Forward

Backward

Problem: The values in the ω-, α-, and β-tables can come very 
close to zero, by multiplying them we potentially exceed the 
precision of double precision floating points and get underflow

Next: How to implement the basic algorithms (forward, 
backward, and Viterbi) in a “numerically” sound manner.
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