
Hidden Markov Models
Algorithms for decoding

HMM joint probability distribution

If A and Ф are the same for all n then the HMM is homogeneous

Observables: Latent states: Model parameters:

Decoding using HMMs
Given a HMM Θ and a sequence of observations X = x

1
,...,x

N
,

find a plausible explanation, i.e. a sequence Z* = z*
1
,...,z*

N
of

values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of X:

Posterior decoding

z*
n
is the most likely state to be in the n'th step:

Viterbi decoding

Where is the probability

of the most likely sequence of states z
1
,...,z

n
ending in z

n
generating

the observations x
1
,...,x

n

Given X, find Z* such that:

Viterbi decoding

Where is the probability

of the most likely sequence of states z
1
,...,z

n
ending in z

n
generating

the observations x
1
,...,x

n

Given X, find Z* such that:

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

The ω-recursion

The ω-recursion

Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n

The ω-recursion

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n

The ω-recursion

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

// Pseudo code for computing ω[k][n] for some n>1

ω[k][n] = 0

for j = 1 to K:

ω[k][n] = max(ω[k][n], p(x[n] | k) * ω[j][n-1] * p(k | j))

Recursion:

Basis:

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n

The ω-recursion

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

Computing ω takes time O(K2N) and

space O(KN) using memorization

// Pseudo code for computing ω[k][n] for some n>1

ω[k][n] = 0

for j = 1 to K:

ω[k][n] = max(ω[k][n], p(x[n] | k) * ω[j][n-1] * p(k | j))

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n
. We find Z* by

backtracking:

Viterbi decoding – Retrieving Z*

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n
. We find Z* by

backtracking:

Viterbi decoding – Retrieving Z*

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

// Pseudocode for backtracking

z[1..N] = undef

z[N] = arg max
k
 ω[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 (p(x[n+1] | z[n+1]) * ω[k][n] * p(z[n+1] | k))

print z[1..N]

ω(z
n
) is the probability of the most likely sequence of states z

1
,...,z

n

ending in z
n
generating the observations x

1
,...,x

n
. We find Z* by

backtracking:

Viterbi decoding – Retrieving Z*

n

k

ω[k][n] = ω(z
n
) if z

n
is state k

1 N

Backtracking takes time O(KN) and

space O(KN) using ω

// Pseudocode for backtracking

z[1..N] = undef

z[N] = arg max
k
 ω[k][N]

for n = N-1 to 1:
 z[n] = arg max

k
 (p(x[n+1] | z[n+1]) * ω[k][n] * p(z[n+1] | k))

print z[1..N]

Decoding using HMMs
Given a HMM Θ and a sequence of observations X = x

1
,...,x

N
,

find a plausible explanation, i.e. a sequence Z* = z*
1
,...,z*

N
of

values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of X:

Posterior decoding

z*
n
is the most likely state to be in the n'th step:

Posterior decoding

Given X, find Z*, where

is the most likely state to be in the n'th step.

Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

n

k

1 N

α[k][n] = α(z
n
) if z

n
is state k

n

k

1 N

β[k][n] = β(z
n
) if z

n
is state k

Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

Using α(z
n
) and β(z

n
) we get the likelihood of the observations as:

The forward algorithm

n

k

1 N

α[k][n] = α(z
n
) if z

n
is state k

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

The α-recursion

The α-recursion

The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

Recursion:

Basis:

n

k

α[k][n] = α(z
n
) if z

n
is state k

1 N

The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

Recursion:

Basis:

// Pseudo code for computing α[k][n] for some n>1

α[k][n] = 0

for j = 1 to K:

α[k][n] = α[k][n] + p(x[n] | k) * α[j][n-1] * p(k | j)

n

k

α[k][n] = α(z
n
) if z

n
is state k

1 N

n

k

α[k][n] = α(z
n
) if z

n
is state k

1 N

The forward algorithm

α(z
n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

Recursion:

Basis:

Computing α takes time O(K2N) and

space O(KN) using memorization

// Pseudo code for computing α[k][n] for some n>1

α[k][n] = 0

for j = 1 to K:

α[k][n] = α[k][n] + p(x[n] | k) * α[j][n-1] * p(k | j)

The backward algorithm

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

n

k

1 N

β[k][n] = β(z
n
) if z

n
is state k

The β-recursion

The β-recursion

The backward algorithm

Recursion:

Basis:

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

n

k

β[k][n] = β(z
n
) if z

n
is state k

1 N

The backward algorithm

Recursion:

Basis:

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

// Pseudo code for computing β[k][n] for some n<N

β[k][n] = 0

for j = 1 to K:

β[k][n] = β[k][n] + p(j | k) * p(x[n+1] | j) * β[j][n+1]

n

k

β[k][n] = β(z
n
) if z

n
is state k

1 N

n

k

β[k][n] = β(z
n
) if z

n
is state k

1 N

The backward algorithm

Recursion:

Basis:

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

Computing β takes time O(K2N) and

space O(KN) using memorization

// Pseudo code for computing β[k][n] for some n<N

β[k][n] = 0

for j = 1 to K:

β[k][n] = β[k][n] + p(j | k) * p(x[n+1] | j) * β[j][n+1]

Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

Using α(z
n
) and β(z

n
) we get the likelihood of the observations as:

Posterior decoding
α(z

n
) is the joint probability of observing x

1
,...,x

n
and being in state z

n

β(z
n
) is the conditional probability of future observation x

n+1
,...,x

N

assuming being in state z
n

Using α(z
n
) and β(z

n
) we get the likelihood of the observations as:

// Pseudocode for posterior decoding

Compute α[1..K][1..N] and β[1..K][1..N]

pX = α[1][N] + α[2][N] + … + α[K][N]

z[1..N] = undef

for n = 1 to N:
 z[n] = arg max

k
 (α[k][n] * β[k][n] / pX)

print z[1..N]

Viterbi vs. Posterior decoding

A sequence of states z
1
,...,z

N
 where p(x

1
,...,x

N
, z

1
,...,z

N
) > 0 is a

legal (or syntactically correct) decoding of X.

Viterbi finds the most likely syntactically correct decoding of X.

What does Posterior decoding find?

Does it always find a syntactically correct decoding of X?

Viterbi vs. Posterior decoding

A sequence of states z
1
,...,z

N
 where p(x

1
,...,x

N
, z

1
,...,z

N
) > 0 is a

legal (or syntactically correct) decoding of X.

Viterbi finds the most likely syntactically correct decoding of X.

What does Posterior decoding find?

Does it always find a syntactically correct decoding of X?

Viterbi vs. Posterior decoding

A sequence of states z
1
,...,z

N
 where P(x

1
,...,x

N
, z

1
,...,z

N
) > 0 is a

legal (or syntactically correct) decoding of X.

A:.5
B:.5

A:.5
B:.5

A:.5
B:.5

1

2

3

1

11/2

1/2
Emits a sequence of A and Bs fol-
lowing either the path 12....2 or
13....3 with equal probability

I.e. Viterbi finds either 12...2 or
13...3, while Posterior finds that 2
and 3 are equally likely for n>1.

 Determine the likelihood of a sequence of
observations.

 Find a plausible underlying explanation (or
decoding) of a sequence of observations.

Recall: Using HMMs

The sum has KN terms, but it turns out that it can be computed
in O(K2N) time by computing the α-table using the forward
algorithm and summing the last column:

p(X) = α[1][N] + α[2][N] + … + α[K][N]

Summary

 Viterbi- and Posterior decoding for finding a
plausible underlying explanation (sequence of
hidden states) of a sequence of observation

 forward-backward algorithms for computing
the likelihood of being in a given state in the
n'th step, and for determining the likelihood of a
sequence of observations.

Recursion:

Basis:

Recursion:

Basis:

Recursion:

Basis:

Viterbi

Forward

Backward

Recursion:

Basis:

Recursion:

Basis:

Recursion:

Basis:

Viterbi

Forward

Backward

Problem: The values in the ω-, α-, and β-tables can come very
close to zero, by multiplying them we potentially exceed the
precision of double precision floating points and get underflow

Next: How to implement the basic algorithms (forward,
backward, and Viterbi) in a “numerically” sound manner.

	Lecture Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Summary
	Slide 36
	Slide 37

