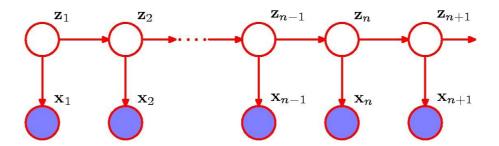
#### Terminology, Representation and Basic Problems



#### The next two weeks

#### Hidden Markov models (HMMs):

Wed 20/11: Terminology and basic algorithms.

Fri 22/11: Implementing the basic algorithms.

Wed 27/11: Implementing the basic algorithms, cont.

Selecting model parameters and training.

Fri 29/11: Selecting model parameters and training, cont.

Extensions and applications.

We use Chapter 13 from Bishop's book "Pattern Recognition and Machine Learning". Rabiner's paper "A Tutorial on Hidden Markov Models [...]" might also be useful to read.

Blackboard and http://birc.au.dk/~cstorm/courses/ML\_e19

## What is machine learning?

Machine learning means different things to different people, and there is no general agreed upon core set of algorithms that must be learned.

For me, the core of machine learning is:

Building a mathematical model that captures some desired structure of the data that you are working on.

<u>Training the model</u> (i.e. set the parameters of the model) based on existing data to optimize it as well as we can.

**Making predictions** by using the model on new data.

#### **Data – Observations**

A sequence of observations from a finite and discrete set, e.g. measurements of weather patterns, daily values of stocks, the composition of DNA or proteins, or ...

$$\mathbf{X} = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$$

**Typical question/problem:** How likely is a given **X**, i.e. p(**X**)?

We need a model that describes how to compute p(X)

# Simple Models (1)

Observations are independent and identically distributed

$$\mathbf{x}_1$$
  $\mathbf{x}_2$   $\mathbf{x}_3$   $\mathbf{x}_4$   $\cdots$ 

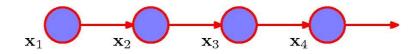
$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n)$$

Too simplistic for realistic modelling of many phenomena

# Simple Models (2)

The *n*'th observation in a chain of observations is influenced only by the *n*-1'th observation, i.e.

$$p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})=p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

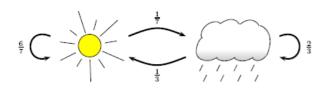


The chain of observations is a 1st-order Markov chain, and the probability of a sequence of *N* observations is

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}) = p(\mathbf{x}_1) \prod_{n=2}^N p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

The model, i.e.  $p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$ :

A sequence of observations:







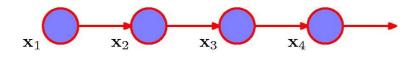




The

the *n*-1'th observation, i.e.

$$p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}) = p(\mathbf{x}_n|\mathbf{x}_{n-1})$$



The chain of observations is a 1st-order Markov chain, and the probability of a sequence of N observations is

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1}) = p(\mathbf{x}_1) \prod_{n=2}^N p(\mathbf{x}_n|\mathbf{x}_{n-1})$$

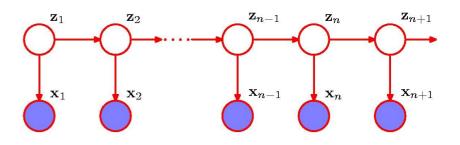
by

What if the *n'*th observation in a chain of observations is influenced by a corresponding hidden variable?

#### Latent values

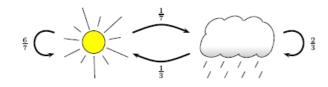


#### **Observations**

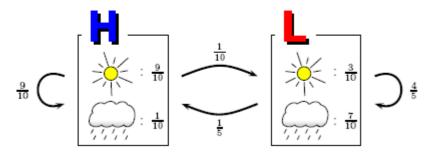


What if the *n*'th observation in a chain of observations is influenced by a corresponding hidden variable?

#### Markov Model



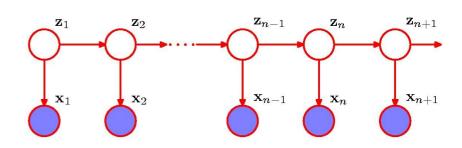
#### Hidden Markov Model



#### Latent values



#### **Observations**

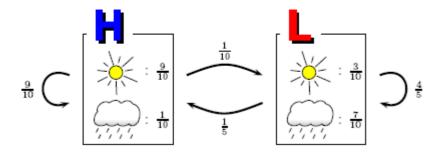


What if the *n*'th observation in a chain of observations is influenced

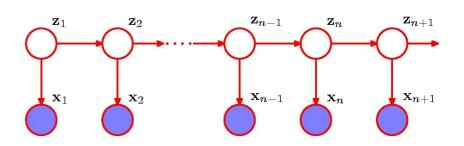
The joint distribution

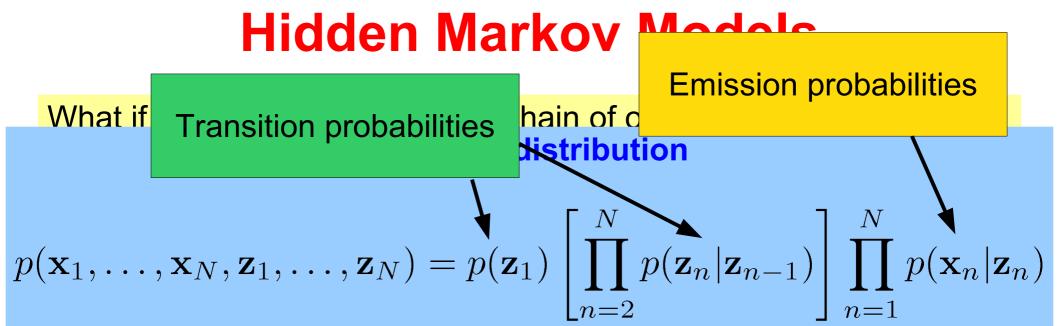
$$p(\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{z}_1, \dots, \mathbf{z}_N) = p(\mathbf{z}_1) \left[ \prod_{n=2}^N p(\mathbf{z}_n | \mathbf{z}_{n-1}) \right] \prod_{n=1}^N p(\mathbf{x}_n | \mathbf{z}_n)$$

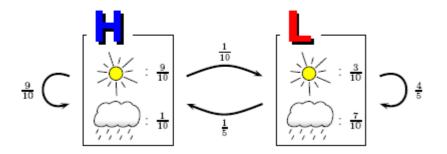
#### Hidden Markov Model



#### **Observations**







#### **Observations**



### **Transition probabilities**

**Notation:** In Bishop, the hidden variables  $\mathbf{z}_n$  are positional vectors, e.g. if  $\mathbf{z}_n = (0,0,1)$  then the model in step n is in state k=3

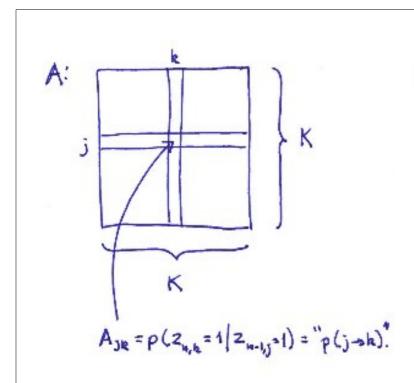
**Transition probabilities:** If the hidden variables are discrete with K states, the conditional distribution  $p(\mathbf{z}_n \mid \mathbf{z}_{n-1})$  is a  $K \times K$  table  $\mathbf{A}$ , and the marginal distribution  $p(\mathbf{z}_1)$  describing the initial state is a K vector  $\mathbf{\pi}$ 

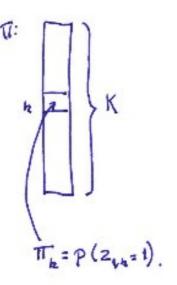
The probability of going from state *j* to state *k* is:

$$A_{jk} \equiv p(z_{nk} = 1 | z_{n-1,j} = 1)$$
$$\sum_{k} A_{jk} = 1$$

The probability of state *k* being the initial state is:

$$\pi_k \equiv p(z_{1k} = 1)$$
$$\sum_k \pi_k = 1$$





#### ities

e positional vectors, state *k*=3 ...

s are discrete with *K* and ial state is a *K* 

vector **π** ...

The probability of going from state *j* to state *k* is:

$$A_{jk} \equiv p(z_{nk} = 1 | z_{n-1,j} = 1)$$

$$\sum_{k} A_{jk} = 1$$

The probability of state *k* being the initial state is:

$$\pi_k \equiv p(z_{1k} = 1)$$
$$\sum_{k=1}^{\infty} \pi_k = 1$$

#### The transition probabilities:

#### **Notat**

e.g. if

Trans states the m vecto

$$p(\mathbf{z}_n|\mathbf{z}_{n-1},\mathbf{A}) = \prod_{k=1}^K \prod_{j=1}^K A_{jk}^{z_{n-1,j}z_{nk}}$$

$$p(\mathbf{z}_1 | \pi) = \prod_{k=1}^{K} \pi_k^{z_{1k}}$$

tors,

vith *K* and

The probability of going from state *j* to state *k* is:

$$A_{jk} \equiv p(z_{nk} = 1 | z_{n-1,j} = 1)$$

$$\sum_{k} A_{jk} = 1$$

The probability of state *k* being the initial state is:

$$\pi_k \equiv p(z_{1k} = 1)$$

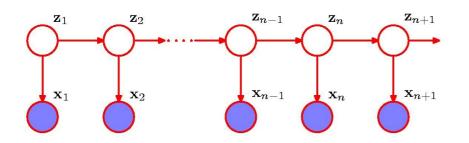
$$\sum_{k} \pi_k = 1$$

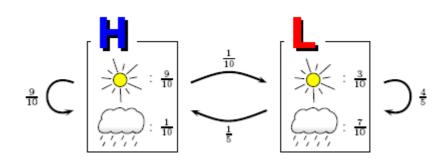
### **Emission probabilities**

**Emission probabilities:** The conditional distributions of the observed variables  $p(\mathbf{x}_n \mid \mathbf{z}_n)$  from a specific state

If the observed values  $\mathbf{x}_n$  are discrete (e.g. D symbols), the emission probabilities  $\boldsymbol{\phi}$  is a KxD table of probabilities which for each of the K states specifies the probability of emitting each observable ...

$$p(\mathbf{x}_n|\mathbf{z}_n,\phi) = \prod_{k=1}^K p(\mathbf{x}_n|\phi_k)^{z_{nk}}$$

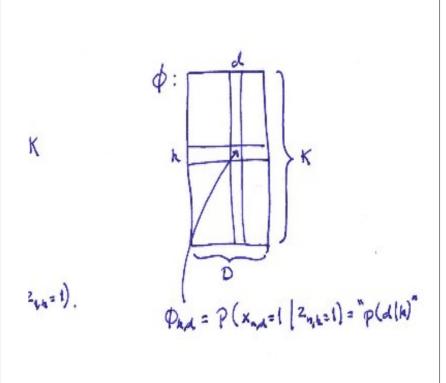




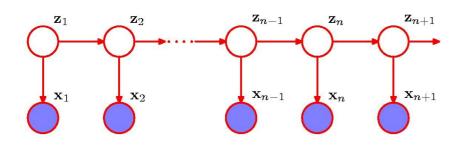
## **Emission prob**

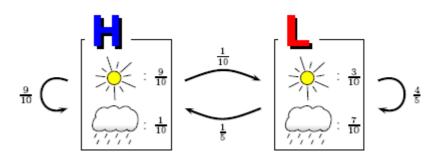
**Emission probabilities:** The condition observed variables  $p(\mathbf{x}_n \mid \mathbf{z}_n)$  from a specific

If the observed values  $\mathbf{x}_n$  are discrete (expression) probabilities  $\boldsymbol{\phi}$  is a KxD table of probability states specifies the probability of emitting



$$p(\mathbf{x}_n|\mathbf{z}_n,\phi) = \prod_{k=1}^K p(\mathbf{x}_n|\phi_k)^{z_{nk}}$$





## HMM joint probability distribution

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[ \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

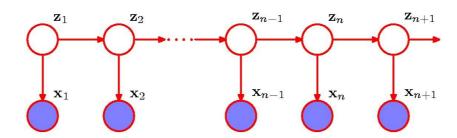
Observables: Latent states:

Model parameters:

$$\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$$
  $\mathbf{Z} = {\mathbf{z}_1, \dots, \mathbf{z}_N}$   $\Theta = {\pi, \mathbf{A}, \phi}$ 

$$\mathbf{Z} = \{\mathbf{z}_1, \dots, \mathbf{z}_N\}$$

$$\Theta = \{\pi, \mathbf{A}, \phi\}$$

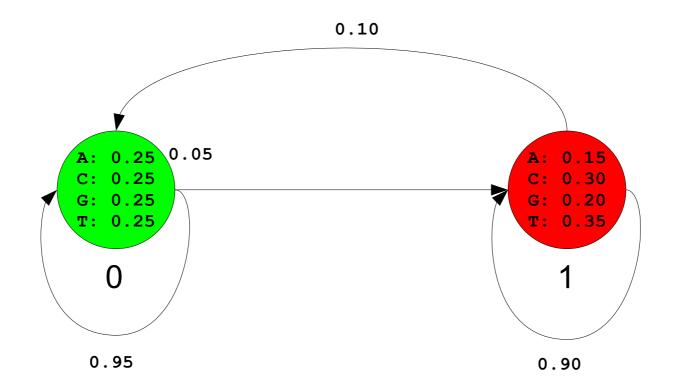


If A and  $\phi$  are the same for all n then the HMM is homogeneous

### Example – 2-state HMM

Observable: {A, C, G, T}, States: {0,1}

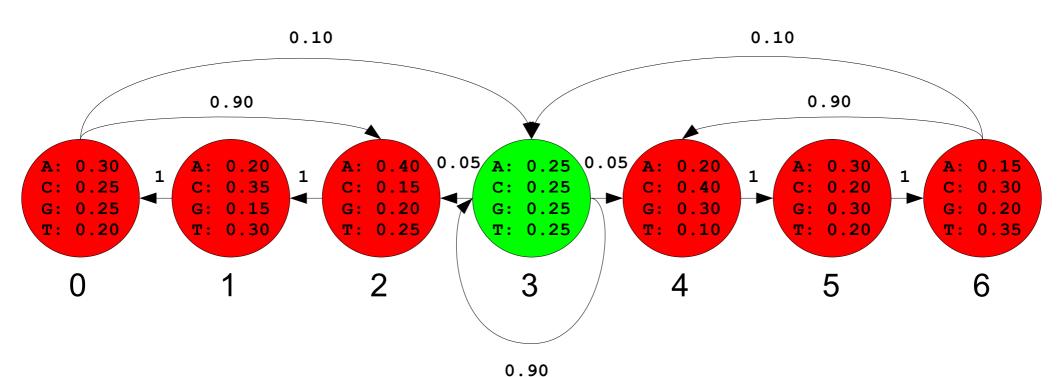
```
A = \begin{pmatrix} 0.95 & 0.05 \\ 0.10 & 0.90 \end{pmatrix}
\pi = \begin{pmatrix} 1.00 \\ 0.00 \end{pmatrix}
\phi = \begin{pmatrix} 0.25 & 0.25 & 0.25 \\ 0.20 & 0.30 & 0.30 \end{pmatrix}
```



### Example – 7-state HMM

Observable: {A, C, G, T}, States: {0,1, 2, 3, 4, 5, 6}

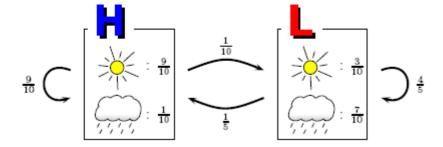
```
0.30 0.25 0.25 0.20
0.00 0.00 0.90 0.10 0.00 0.00 0.00
                                              0.00
                                                                 0.20 0.35 0.15 0.30
1.00 0.00 0.00 0.00 0.00 0.00 0.00
                                              0.00
                                                                  0.40 0.15 0.20 0.25
0.00 1.00 0.00 0.00 0.00 0.00 0.00
                                              0.00
0.00 0.00 0.05 0.90 0.05 0.00 0.00
                                                                  0.25 0.25 0.25 0.25
                                              1.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00
                                                                  0.20 0.40 0.30 0.10
                                              0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00
                                                                 0.30 0.20 0.30 0.20
                                              0.00
0.00 0.00 0.00 0.10 0.90 0.00 0.00
                                                                 0.15 0.30 0.20 0.35
                                              0.00
```



## HMMs as a generative model

A HMM generates a sequence of observables by moving from latent state to latent state according to the transition probabilities and emitting an observable (from a discrete set of observables, i.e. a finite alphabet) from each latent state visited according to the emission probabilities of the state ...

Model M:



A run follows a sequence of states:

 $\mathsf{H}$   $\mathsf{H}$   $\mathsf{L}$   $\mathsf{L}$   $\mathsf{H}$ 

And emits a sequence of symbols:



### Computing P(X,Z)

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[ \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
def joint_prob(x, z):
    Returns the joint probability of x and z
    p = init_prob[z[0]] * emit_prob[z[0]][x[0]]
    for i in range(1, len(x)):
        p = p * trans_prob[z[i-1]][z[i]] * emit_prob[z[i]][x[i]]
    return p
```

## Computing P(X,Z)

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[ \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
$ python hmm jointprob.py hmm-7-state.txt test_seq100.txt
         > sea100
         p(x,z) = 1.8619524290102162e-65
def io $ python hmm_jointprob.py hmm-7-state.txt test_seq200.txt
         > seq200
         p(x,z) = 1.6175774997005771e-122
         $ python hmm jointprob.py hmm-7-state.txt test seq300.txt
         > sea300
         p(x,z) = 3.0675430597843052e-183
         $ python hmm jointprob.py hmm-7-state.txt test seq400.txt
                                                                                  [x[i]]
         > sea400
         p(x,z) = 4.860704144302979e-247
         $ python hmm jointprob.py hmm-7-state.txt test seq500.txt
         > seq500
         p(x,z) = 5.258724342206735e-306
         $ python hmm jointprob.py hmm-7-state.txt test seq600.txt
         > seq600
         p(x,z) = 0.0
```

## Computing P(X,Z)

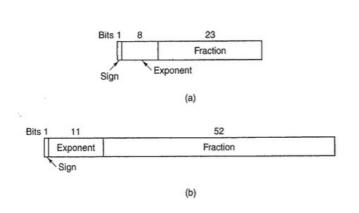
$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[ \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
$ python hmm jointprob.py hmm-7-state.txt test seq100.txt
         > sea100
         p(x,z) = 1.8619524290102162e-65
def io $ python hmm_jointprob.py hmm-7-state.txt test_seq200.txt
         > seq200
         p(x,z) = 1.6175774997005771e-122
         $ python hmm jointprob.py hmm-7-state.txt test seq300.txt
         > sea300
         p(x,z) = 3.0675430597843052e-183
         $ python hmm jointprob.py hmm-7-state.txt test_seq400.txt
                                                                                  [x[i]]
         > sea400
         p(x,z) = 4.860704144302979e-247
         $ python hmm jointprob.py hmm-7-state.txt test seq500.txt
         > seq500
         p(x,z) = 5.258724342206735e-306
         $ nython_hmm jointprob.py hmm-7-state.txt test_seq600.txt
         > seg600
         p(x,z) = 0.0
```

Should be >0 by construction of **X** and **Z** 

## Representing numbers

A floating point number n is represented as  $n = f * 2^e$  cf. the IEEE-754 standard which specify the range of f and e



| Item                         | Single precision                              | Double precision                               |
|------------------------------|-----------------------------------------------|------------------------------------------------|
| Bits in sign                 | 1                                             | 1                                              |
| Bits in exponent             | 8                                             | 11                                             |
| Bits in fraction             | 23                                            | 52                                             |
| Bits, total                  | 32                                            | 64                                             |
| Exponent system              | Excess †27                                    | Excess 1023                                    |
| Exponent range               | -126 to +127                                  | -1022 to +1023                                 |
| Smallest normalized number   | 2-126                                         | 2-1022                                         |
| Largest normalized number    | approx. 2.128                                 | approx. 2 <sup>1024</sup>                      |
| Decimal range                | approx. 10 <sup>-38</sup> to 10 <sup>38</sup> | approx. 10 <sup>-308</sup> to 10 <sup>30</sup> |
| Smallest denormalized number | approx. 100-45                                | approx. 10 <sup>-324</sup>                     |

Figure B-5. Characteristics of IEEE floating-point numbers.

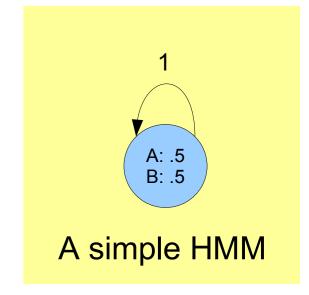
See e.g. Appendix B in Tanenbaum's Structured Computer Organization for further details.

### The problem – Too small numbers

For the simple HMM, the joint-probability p(X,Z) is

$$p(\mathbf{X}, \mathbf{Z}) = 1 \cdot \prod_{n=2}^{N} 1 \cdot \prod_{n=1}^{N} \frac{1}{2} = \left(\frac{1}{2}\right)^n = 2^{-n}$$

If n > 467 then  $2^{-n}$  is smaller than  $10^{-324}$ , i.e. cannot be represented



### The problem – Too small numbers

For the simple HMM, the joint-probability p(X,Z) is

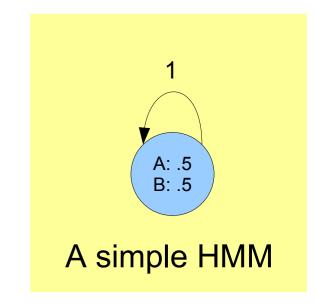
$$p(\mathbf{X}, \mathbf{Z}) = 1 \cdot \prod_{n=2}^{N} 1 \cdot \prod_{n=1}^{N} \frac{1}{2} = \left(\frac{1}{2}\right)^n = 2^{-n}$$

If n > 467 then  $2^{-n}$  is smaller than  $10^{-324}$ , i.e. cannot be represented

No problem representing

$$\log p(\mathbf{X}, \mathbf{Z}) = -n$$

as the decimal range is approx -10<sup>308</sup> to 10<sup>308</sup>



# Solution: Compute log P(X,Z)

$$p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = p(\mathbf{z}_1|\pi) \left[ \prod_{n=2}^{N} p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) \right] \prod_{n=1}^{N} p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

Use log(XY) = log X + log Y, and define log 0 to be -inf

$$\log p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta}) = \log p(\mathbf{z}_1 | \pi) + \sum_{n=2}^{N} \log p(\mathbf{z}_n | \mathbf{z}_{n-1}, \mathbf{A}) + \sum_{n=1}^{N} \log p(\mathbf{x}_n | \mathbf{z}_n, \phi)$$

# Solution: Compute log P(X,Z)

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = \log p(\mathbf{z}_1|\pi) + \sum_{n=2}^{N} \log p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) + \sum_{n=1}^{N} \log p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
def log_joint_prob(self, x, z):
    """
    Returns the log transformed joint probability of x and z
    """
    logp = log(init_prob[z[0]]) + log(emit_prob[z[0]][x[0]])
    for i in range(1, len(x)):
        logp = logp + log(trans_prob[z[i-1]][z[i]]) + log(emit_prob[z[i]][x[i]])
    return logp
```

# Solution: Compute log P(X,Z)

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta}) = \log p(\mathbf{z}_1|\pi) + \sum_{n=2}^{N} \log p(\mathbf{z}_n|\mathbf{z}_{n-1}, \mathbf{A}) + \sum_{n=1}^{N} \log p(\mathbf{x}_n|\mathbf{z}_n, \phi)$$

```
$ python hmm log jointprob.py hmm-7-state.txt test_seq100.txt
            log p(x,z) = -149.04640541441395
Returns t $ python hmm_log_jointprob.py hmm-7-state.txt test seq200.txt
            > seq200
111111
            log p(x,z) = -280.43445168576596
logp = lo
for i in $ python hmm_log_jointprob.py hmm-7-state.txt test seq300.txt
            > sea300
     \log p = -420.25219508298494
                                                                                  [z[i]][x[i]]
return lo
            $ python hmm log jointprob.py hmm-7-state.txt test seq400.txt
            > sea400
            \log p(x,z) = -567.1573346564519
            $ python hmm log jointprob.py hmm-7-state.txt test seq500.txt
            > seq500
            \log p(x,z) = -702.9311499793356
            $ python hmm log jointprob.py hmm-7-state.txt test seq600.txt
            > seq600
            log p(x,z) = -842.0056730984585
```

#### **Using HMMs**

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

### **Using HMMs**

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

$$p(\mathbf{X}|\mathbf{\Theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta})$$

### **Using HMMs**

- Determine the likelihood of a sequence of observations.
- Find a plausible underlying explanation (or decoding) of a sequence of observations.

$$p(\mathbf{X}|\mathbf{\Theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\mathbf{\Theta})$$

The sum has  $K^N$  terms, but it turns out that it can be computed in  $O(K^2N)$  time, but first we will consider **decoding** 

## **Decoding using HMMs**

Given a HMM  $\Theta$  and a sequence of observations  $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$ , find a plausible explanation, i.e. a sequence  $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$  of values of the hidden variable.

## **Decoding using HMMs**

Given a HMM  $\Theta$  and a sequence of observations  $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$ , find a plausible explanation, i.e. a sequence  $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$  of values of the hidden variable.

#### Viterbi decoding

**Z**\* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$$

## **Decoding using HMMs**

Given a HMM  $\Theta$  and a sequence of observations  $\mathbf{X} = \mathbf{x}_1, ..., \mathbf{x}_N$ , find a plausible explanation, i.e. a sequence  $\mathbf{Z}^* = \mathbf{z}^*_1, ..., \mathbf{z}^*_N$  of values of the hidden variable.

#### Viterbi decoding

**Z**\* is the overall most likely explanation of **X**:

$$\mathbf{Z}^* = \arg\max_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z} | \mathbf{\Theta})$$

#### **Posterior decoding**

 $\mathbf{z}^*$  is the most likely state to be in the *n*'th step:

$$\mathbf{z}_n^* = \arg\max_{\mathbf{z}_n} p(\mathbf{z}_n | \mathbf{x}_1, \dots, \mathbf{x}_N)$$

### **Summary**

- Terminology of hidden Markov models (HMMs)
- Viterbi- and Posterior decoding for finding a plausible underlying explanation (sequence of hidden states) of a sequence of observation
- Next: Algorithms for computing the Viterbi and Posterior decodings efficiently