
Hidden Markov Models
Terminology, Representation and Basic Problems

Hidden Markov models (HMMs):

Wed 31/10: Terminology and basic algorithms.

Fri 2/11: Implementing the basic algorithms.

Wed 7/11: Implementing the basic algorithms, cont.

Selecting model parameters and training.

Fri 9/11: Selecting model parameters and training, cont.

Wed 14/11: Introduction to mandatory project.

Fri 16/11: Extensions and applications.

We use Chapter 13 from Bishop's book “Pattern Recognition and Machine
Learning”. Rabiner's paper “A Tutorial on Hidden Markov Models [...]”
might also be useful to read.

Blackboard and http://cs.au.dk/~cstorm/courses/ML_e18

The next three weeks

Machine learning means different things to different people,
and there is no general agreed upon core set of algorithms
that must be learned.

For me, the core of machine learning is:

Building a mathematical model that captures some desired
structure of the data that you are working on.

Training the model (i.e. set the parameters of the model)
based on existing data to optimize it as well as we can.

Making predictions by using the model on new data.

What is machine learning?

Data – Observations

A sequence of observations from a finite and discrete set, e.g.
measurements of weather patterns, daily values of stocks, the
composition of DNA or proteins, or ...

Typical question/problem: How likely is a given X, i.e. p(X)?

We need a model that describes how to compute p(X)

Simple Models (1)

Observations are independent and identically distributed

Too simplistic for realistic modelling of many phenomena

Simple Models (2)

The n'th observation in a chain of observations is influenced only by
the n-1'th observation, i.e.

The chain of observations is a 1st-order Markov chain, and the
probability of a sequence of N observations is

Simple Models (2)

The n'th observation in a chain of observations is influenced only by
the n-1'th observation, i.e.

The chain of observations is a 1st-order Markov chain, and the
probability of a sequence of N observations is

A sequence of observations:The model, i.e. p(x
n
 | x

n-1
):

Hidden Markov Models

What if the n'th observation in a chain of observations is influenced
by a corresponding hidden variable?

If the hidden variables are discrete and form a Markov chain, then it
is a hidden Markov model (HMM)

H H L L H

Observations

Latent values

Hidden Markov Models

H H L L H

Observations

Latent values

What if the n'th observation in a chain of observations is influenced
by a corresponding hidden variable?

If the hidden variables are discrete and form a Markov chain, then it
is a hidden Markov model (HMM)

Markov Model

Hidden Markov Model

H H L L H

Observations

Latent values

What if the n'th observation in a chain of observations is influenced
by a corresponding hidden variable?

Hidden Markov Models

Markov Model

Hidden Markov Model

The joint distribution

If the hidden variables are discrete and form a Markov chain, then it
is a hidden Markov model (HMM)

H H L L H

Observations

Latent values

What if the n'th observation in a chain of observations is influenced
by a corresponding hidden variable?

Hidden Markov Models

Markov Model

Hidden Markov Model

The joint distribution
Transition probabilities

Emission probabilities

If the hidden variables are discrete and form a Markov chain, then it
is a hidden Markov model (HMM)

Transition probabilities

Notation: In Bishop, the hidden variables z
n
 are positional vectors,

e.g. if z
n
 = (0,0,1) then the model in step n is in state k=3

Transition probabilities: If the hidden variables are discrete with K
states, the conditional distribution p(z

n
 | z

n-1
) is a K x K table A, and

the marginal distribution p(z
1
) describing the initial state is a K

vector π

The probability of going from
state j to state k is:

The probability of state k
being the initial state is:

Transition probabilities: If the hidden variables are discrete with K
states, the conditional distribution p(z

n
 | z

n-1
) is a K x K table A, and

the marginal distribution p(z
1
) describing the initial state is a K

vector π ...

Transition probabilities

The probability of going from
state j to state k is:

The probability of state k
being the initial state is:

Notation: In Bishop, the hidden variables z
n
 are positional vectors,

e.g. if z
n
 = (0,0,1) then the model in step n is in state k=3 ...

Transition probabilities: If the hidden variables are discrete with K
states, the conditional distribution p(z

n
 | z

n-1
) is a K x K table A, and

the marginal distribution p(z
1
) describing the initial state is a K

vector π ...

Transition Probabilities

Notation: In Bishop, the hidden variables z
n
 are positional vectors,

e.g. if z
n
 = (0,0,1) then the model in step n is in state k=3 ...

The transition probabilities:

The probability of going from
state j to state k is:

The probability of state k
being the initial state is:

Emission probabilities

Emission probabilities: The conditional distributions of the
observed variables p(x

n
 | z

n
) from a specific state

If the observed values x
n
are discrete (e.g. D symbols), the emission

probabilities Ф is a KxD table of probabilities which for each of the K
states specifies the probability of emitting each observable ...

Emission probabilities

Emission probabilities: The conditional distributions of the
observed variables p(x

n
 | z

n
) from a specific state

If the observed values x
n
are discrete (e.g. D symbols), the emission

probabilities Ф is a KxD table of probabilities which for each of the K
states specifies the probability of emitting each observable ...

HMM joint probability distribution

If A and Ф are the same for all n then the HMM is homogeneous

Observables: Latent states: Model parameters:

Example – 2-state HMM

A: 0.15
C: 0.30
G: 0.20
T: 0.35

A: 0.25
C: 0.25
G: 0.25
T: 0.25

0 1

0.90

0.10

0.95

0.05

Observable: {A, C, G, T}, States: {0,1}

0.95 0.05
0.10 0.90

1.00
0.00

0.25 0.25 0.25 0.25
0.20 0.30 0.30 0.20πA φ

Example – 7-state HMM

A: 0.30
C: 0.25
G: 0.25
T: 0.20

A: 0.20
C: 0.35
G: 0.15
T: 0.30

A: 0.40
C: 0.15
G: 0.20
T: 0.25

A: 0.20
C: 0.40
G: 0.30
T: 0.10

A: 0.30
C: 0.20
G: 0.30
T: 0.20

A: 0.15
C: 0.30
G: 0.20
T: 0.35

A: 0.25
C: 0.25
G: 0.25
T: 0.25

0 1 2 3 4 5 6

1 1 1 1

0.900.90

0.10 0.10

0.90

0.05 0.05

Observable: {A, C, G, T}, States: {0,1, 2, 3, 4, 5, 6}

0.00 0.00 0.90 0.10 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.05 0.90 0.05 0.00 0.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.10 0.90 0.00 0.00

0.00
0.00
0.00
1.00
0.00
0.00
0.00

0.30 0.25 0.25 0.20
0.20 0.35 0.15 0.30
0.40 0.15 0.20 0.25
0.25 0.25 0.25 0.25
0.20 0.40 0.30 0.10
0.30 0.20 0.30 0.20
0.15 0.30 0.20 0.35πA φ

HMMs as a generative model

Model M: A run follows a sequence of states:

H H L L H

And emits a sequence of symbols:

A HMM generates a sequence of observables by moving from
latent state to latent state according to the transition probabilities
and emitting an observable (from a discrete set of observables,
i.e. a finite alphabet) from each latent state visited according to
the emission probabilities of the state ...

Computing P(X,Z)

 def joint_prob(x, z):
 """
 Returns the joint probability of x and z
 """
 p = init_prob[z[0]] * emit_prob[z[0]][x[0]]
 for i in range(1, len(x)):
 p = p * trans_prob[z[i-1]][z[i]] * emit_prob[z[i]][x[i]]
 return p

Computing P(X,Z)

 def joint_prob(x, z):
 """
 Returns the joint probability of x and z
 """
 p = init_prob[z[0]] * emit_prob[z[0]][x[0]]
 for i in range(1, len(x)):
 p = p * trans_prob[z[i-1]][z[i]] * emit_prob[z[i]][x[i]]
 return p

$ python hmm_jointprob.py hmm-7-state.txt test_seq100.txt
> seq100
p(x,z) = 1.8619524290102162e-65

$ python hmm_jointprob.py hmm-7-state.txt test_seq200.txt
> seq200
p(x,z) = 1.6175774997005771e-122

$ python hmm_jointprob.py hmm-7-state.txt test_seq300.txt
> seq300
p(x,z) = 3.0675430597843052e-183

$ python hmm_jointprob.py hmm-7-state.txt test_seq400.txt
> seq400
p(x,z) = 4.860704144302979e-247

$ python hmm_jointprob.py hmm-7-state.txt test_seq500.txt
> seq500
p(x,z) = 5.258724342206735e-306

$ python hmm_jointprob.py hmm-7-state.txt test_seq600.txt
> seq600
p(x,z) = 0.0

Computing P(X,Z)

 def joint_prob(x, z):
 """
 Returns the joint probability of x and z
 """
 p = init_prob[z[0]] * emit_prob[z[0]][x[0]]
 for i in range(1, len(x)):
 p = p * trans_prob[z[i-1]][z[i]] * emit_prob[z[i]][x[i]]
 return p

$ python hmm_jointprob.py hmm-7-state.txt test_seq100.txt
> seq100
p(x,z) = 1.8619524290102162e-65

$ python hmm_jointprob.py hmm-7-state.txt test_seq200.txt
> seq200
p(x,z) = 1.6175774997005771e-122

$ python hmm_jointprob.py hmm-7-state.txt test_seq300.txt
> seq300
p(x,z) = 3.0675430597843052e-183

$ python hmm_jointprob.py hmm-7-state.txt test_seq400.txt
> seq400
p(x,z) = 4.860704144302979e-247

$ python hmm_jointprob.py hmm-7-state.txt test_seq500.txt
> seq500
p(x,z) = 5.258724342206735e-306

$ python hmm_jointprob.py hmm-7-state.txt test_seq600.txt
> seq600
p(x,z) = 0.0

Should be >0 by construction of X and Z

Representing numbers

A floating point number n is represented as n = f * 2e cf. the IEEE-754
standard which specify the range of f and e

See e.g. Appendix B in Tanenbaum's Structured Computer
Organization for further details.

The problem – Too small numbers

A: .5
B: .5

1

A simple HMM

For the simple HMM, the joint-probability p(X,Z) is

If n > 467 then 2-n is smaller than 10-324, i.e. cannot be represented

The problem – Too small numbers

A: .5
B: .5

1

A simple HMM

For the simple HMM, the joint-probability p(X,Z) is

If n > 467 then 2-n is smaller than 10-324, i.e. cannot be represented

No problem representing

log p(X,Z) = -n

as the decimal range is approx -10308 to 10308

Solution: Compute log P(X,Z)

Use log (XY) = log X + log Y, and define log 0 to be -inf

Solution: Compute log P(X,Z)

def log_joint_prob(self, x, z):
 """
 Returns the log transformed joint probability of x and z
 """
 logp = log(init_prob[z[0]]) + log(emit_prob[z[0]][x[0]])
 for i in range(1, len(x)):
 logp = logp + log(trans_prob[z[i-1]][z[i]]) + log(emit_prob[z[i]][x[i]])
 return logp

Solution: Compute log P(X,Z)

def log_joint_prob(self, x, z):
 """
 Returns the log transformed joint probability of x and z
 """
 logp = log(init_prob[z[0]]) + log(emit_prob[z[0]][x[0]])
 for i in range(1, len(x)):
 logp = logp + log(trans_prob[z[i-1]][z[i]]) + log(emit_prob[z[i]][x[i]])
 return logp

$ python hmm_log_jointprob.py hmm-7-state.txt test_seq100.txt
> seq100
log p(x,z) = -149.04640541441395

$ python hmm_log_jointprob.py hmm-7-state.txt test_seq200.txt
> seq200
log p(x,z) = -280.43445168576596

$ python hmm_log_jointprob.py hmm-7-state.txt test_seq300.txt
> seq300
log p(x,z) = -420.25219508298494

$ python hmm_log_jointprob.py hmm-7-state.txt test_seq400.txt
> seq400
log p(x,z) = -567.1573346564519

$ python hmm_log_jointprob.py hmm-7-state.txt test_seq500.txt
> seq500
log p(x,z) = -702.9311499793356

$ python hmm_log_jointprob.py hmm-7-state.txt test_seq600.txt
> seq600
log p(x,z) = -842.0056730984585

Using HMMs

 Determine the likelihood of a sequence of
observations.

 Find a plausible underlying explanation (or
decoding) of a sequence of observations.

 Determine the likelihood of a sequence of
observations.

 Find a plausible underlying explanation (or
decoding) of a sequence of observations.

Using HMMs

 Determine the likelihood of a sequence of
observations.

 Find a plausible underlying explanation (or
decoding) of a sequence of observations.

Using HMMs

The sum has KN terms, but it turns out that it can be computed
in O(K2N) time, but first we will consider decoding

Decoding using HMMs
Given a HMM Θ and a sequence of observations X = x

1
,...,x

N
,

find a plausible explanation, i.e. a sequence Z* = z*
1
,...,z*

N
of

values of the hidden variable.

Decoding using HMMs
Given a HMM Θ and a sequence of observations X = x

1
,...,x

N
,

find a plausible explanation, i.e. a sequence Z* = z*
1
,...,z*

N
of

values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of X:

Decoding using HMMs
Given a HMM Θ and a sequence of observations X = x

1
,...,x

N
,

find a plausible explanation, i.e. a sequence Z* = z*
1
,...,z*

N
of

values of the hidden variable.

Viterbi decoding

Z* is the overall most likely explanation of X:

Posterior decoding

z*
n
is the most likely state to be in the n'th step:

Summary

 Terminology of hidden Markov models (HMMs)

 Viterbi- and Posterior decoding for finding a
plausible underlying explanation (sequence of
hidden states) of a sequence of observation

 Next: Algorithms for computing the Viterbi and
Posterior decodings efficiently

	Lecture Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Summary

