PREDICTION OF MALADAPTATION FROM ECOLOGICAL AND GENOMIC DATA USING GENOMIC OFFSETS

FRANCISCO DE BORJA CAMPUZANO JIMÉNEZ, au726682

MASTER OF SCIENCE IN BIOINFORMATICS June 2024 Supervisors: Thomas Bataillon and Genis Garcia Erill

PREDICTION OF MALADAPTATION FROM ECOLOGICAL AND GENOMIC DATA USING GENOMIC OFFSETS

FRANCISCO DE BORJA CAMPUZANO JIMÉNEZ

Master of Science in Bioinformatics

Bioinformatics Research Centre Faculty of Natural Sciences Aarhus University

June 2024

Francisco de Borja Campuzano Jiménez: *Prediction of maladaptation from ecological and genomic data using genomic offsets,* Master of Science in Bioinformatics © June 2024

CONTENTS

- 1 INTRODUCTION 1
- 2 STATE OF THE ART
 - 2.1 Maladaptation and local adaptation

3

2.2 Why use observational data to predict maladaptation? 4

3

- 2.3 Phenotypic offset
- 2.4 Geometric genomic offset 6
 - 2.4.1 Latent factor mixed model (LFMM) 10

5

- 2.5 Identifying putatively adaptive loci 11
- 2.6 Alternative genomic offset statistics 12
 - 2.6.1 Risk of non-adaptedness 13
 - 2.6.2 Gradient forest genomic offset 14
 - 2.6.3 Redundancy analysis 15
- 3 RESULTS 17
 - 3.1 Conceptual issues on genomic offsets 17
 - 3.1.1 Association of maladaptation and fitness loss 17
 - 3.1.2 Assuming populations are locally adapted or within their adaptive optimum 20
 - 3.2 Methodological research 22
 - 3.2.1 Forward genetics simulations for local and nonlocal adaptation scenarios 22
 - 3.2.2 Empirical genomic offsets 23
 - 3.2.3 Association between the causal and empirical genomic offset 24
 - 3.2.4 Association between the empirical genomic offset and shifted fitness 26
 - 3.2.5 Genomic offsets distribution for nonlocal adaptation scenarios 26
 - 3.2.6 Identifying putatively adaptive loci 28
 - 3.2.7 Selection of environmental covariates 31
 - 3.2.8 Uncertainty quantification
 - 3.2.9 Software implementation in Julia 38
 - 3.2.10 Study case with simulated data from Mediterranean thyme 39

34

- 4 METHODS 45
 - 4.1 Forward genetics simulations for local and non-local adaptation scenarios 45
 - 4.2 Genomic offsets for local and non-local adaptation scenarios 47
 - 4.3 Identifying putatively adaptive loci 48
 4.3.1 Minimizing false positives or false negatives? 48

- Randomly selected loci 4.3.2 49
- Selection of environmental covariates 50 4.4
 - Including uncorrelated environmental variables 4.4.1

50 Including confounded variables with popula-

- 4.4.2 tion structure 50
- Uncertainty quantification 4.5 51
- 4.6 Software implementation in Julia 51
- Study case with simulated data from Mediterranean 4.7 thyme 52
 - 4.7.1 Simulations 52
 - 4.7.2 Genomic offsets 55
- DISCUSSION AND FUTURE WORK 57 5
 - 5.1 Conceptual issues on genomic offsets 57
 - 5.2 Methodological research 58
 - Genomic offset under different local and non-5.2.1 local adaptation scenarios 58
 - Identifying putatively adaptive loci 5.2.2 59
 - Selection of environmental covariates 60 5.2.3
 - Uncertainty quantification 62 5.2.4
 - Software implementation in Julia 5.2.5 63
 - Study case with simulated data from Mediter-5.2.6 ranean thyme 64
- 6 CONCLUSION 67

BIBLIOGRAPHY 69

- A APPENDIX 75
 - A.1 Local and non-local adaptation scenarios 75
 - A.2 Uncertainty quantification 80
 - Runtimes of the bootstrapped genomic offset 80 A.3
 - A.4 Numerical issues with the geometric genomic offset 81

LIST OF FIGURES

Figure 2.1	Conceptual figure of the genomic offset frame- work. 8	
Figure 2.2	Diagram of the alternative genomic offset statis-	
Figure 3.1	Diagram of the foreign-local and home-away	
Figure 3.2	Conceptual issues of the interpolation of a genoty \times environment association (GEA) model. 21	7pe
Figure 3.3	Geometric genomic offsets under different lo- cal and non-local adaptation scenarios. 25	
Figure 3.4	Prediction of shifted fitness with different ge- nomic offset statistics. 27	
Figure 3.5	Prediction of shifted fitness with different sets of loci. 30	
Figure 3.6	Prediction of shifted fitness with spurious ge- nomic offsets. 32	
Figure 3.7	Prediction of shifted fitness with increasing num- ber of uncorrelated environmental covariates	
Figure 3.8	Prediction of shifted fitness with an environ- mental predictor confounded with population))
Figure 3.9	95% population rank bootstrapping confidence intervals. 37	
Figure 3.10	Prediction of shifted fitness of thyme with his- torical environmental data. 42	
Figure 3.11	Prediction of future fitness of thyme with his- torical environmental data. 43	
Figure 4.1 Figure A.1	Schematic diagram of the thyme simulations. risk of non-adaptednes (RONA) genomic off- sets under different local and non-local adap- tation scenarios	53
Figure A.2	redundancy analysis (RDA) genomic offsets un- der different local and non-local adaptation sce- narios. 77	
Figure A.3	Gradient forest genomic offsets under differ- ent local and non-local adaptation scenarios.	78
Figure A.4	Distribution of geometric genomic offsets un- der different local and non-local adaptation sce- narios. 79	,~

Figure A.5	Spearman's correlation of bootstrapped genomic
	offsets. 80
Figure A.6	Runtime of bootstrapping genomic offsets. 81
Figure A.7	Numerical issues of the geometric genomic off-
	sets with binary phenotypic traits. 82

ACRONYMS

- SNP single-nucleotide polymorphism
- QTL quantitative trait locus
- RONA risk of non-adaptednes
- RDA redundancy analysis
- FDR false-discovery ratio
- PCA principal component analysis
- LFMM latent factor mixed model
- GEA genotype × environment association