
Challenges in Bioinformatics

Classification of Non-Ribosomal Peptide Syntheses
with Feed-Forward Neural Networks

Dan Ariel Søndergaard Torben Muldvang Andersen
Henrik Schmidt-Møller

Friday 25th October, 2013

Abstract

Non-ribosomal peptide synthetases (NRPSs) are enzymes that primarily
occur in bacterial and fungi organisms. These enzymes produce a number
of non-ribosomal peptides (NRPs) which have quite diverse characteristics.
It has been found that the A-domain of a NRPS module is crucial to the
end result of the process. Which product is produced by a NRPS can be
concluded experimentally, but this is a slow and expensive process, which
makes prediction of the NRPS product quite important.

In this report we describe the basic theory of neural networks for
regression and classification, how to train such neural networks, and then
apply a neural network for classification of NRPS sequences. To be able
to input sequences of varying length into the neural network we have
constructed an encoding mapping any sequence to a fixed size vector by
counting the occurences of all possible n-grams in the sequence.

Our implementation, nNRPS, is built using PyBrain, a modular machine
learning library for the Python programming language.

We have evaluated nNRPS using five-fold cross validation for n-grams
of different sizes and found out that 3-grams gives us the best result.
Further we have compared our result to two other classifiers based on
profile hidden Markov models. We obtain an accuracy of 80.5% whereas
the two other classifiers have 86.0% and 86.4% true predictions.

1

Contents

Contents 2

1 Introduction 3
1.1 Acknowledgements . 3

2 Theory 3
2.1 Linear Models of Regression . 3
2.2 Neural Networks . 4
2.3 Network Training . 7

3 Implementation 10
3.1 Network Architecture . 10
3.2 Encoding of Input . 11

4 Evaluation 11
4.1 Performance . 12
4.2 Confusion Matrix . 13

5 Previous Works 13

6 Conclusion 14

A Accuracy Results 16

B Confusion Matrix 18

C Using the Classifier 19

D Phylogeny 21

Bibliography 22

2

1 Introduction

Non-ribosomal peptides (NRPs) are products synthesized by a non-ribosomal
process that mainly occurs in bacterial and fungi organisms. The diversity
of these products is quite large and thus NRPs are of significant interest for
e.g. the pharmaceutical industry in the production of antibiotics.

A non-ribosomal peptide synthetase (NRPS) is a large enzyme which
consists of a number of modules. The minimal module consists of three
domains: the A-domain, the PCP-domain, and the C-domain. The A-domain is
the most important in the scope of this report, as it is responsible for recruiting
the amino acids that are incorporated into the final product. Thus, the order of
A-domains in the assembly line of a NRPS determines the sequence of amino
acids in the produced NRP (Eddy, 1998).

This project is based on theq data set presented by Prieto et al. (2012), which
consists of 1546 sequences corresponding to A-domains and their product. We
use this mapping to build a classifier which uses a feed-forward neural network
to predict the product of a certain A-domain.

An artificial neural network is a machine learning technique inspired by the
way neurons in the brain interact. Mathematically this corresponds to a form of
generalized linear regression, for which efficient optimization algorithms exist.

This report considers the implementation of our classifier, nNRPS, including
the theory behind neural networks, methods for their training, and how to use a
neural network for classification of sequences. Finally, we evaluate our approach
using the k-fold cross-validation method and compare the performance of our
approach to existing solutions, particularly the one presented by Prieto et al.
(2012).

1.1 Acknowledgements

We wish to thank Thomas Mailund and Christian Nørgaard Storm Pedersen
for insightful discussions during this project.

2 Theory

In this chapter we will describe the theory behind neural networks. We will
cover feed-forward neural networks and methods for their training, and how a
neural network is adapted to the problems of prediction and classification. A
general overview of the classification process can be seen in figure 1.

We shall begin by describing linear models of regression since they provide
a useful intuition for the mathematics behind neural networks.

2.1 Linear Models of Regression

Suppose we are given set of input variables X = {xn} for n = 1, . . . ,N and a
corresponding set of target variables T = {tn}. The goal of regression is then to
predict the values of the target variables given a xn of dimension D. That is, we
wish to construct a function y = f (x) which given a training set as described
above, can predict the target value of a new point x′.

3

Families f1, ..., fF

p1 = p(x | f1)
...

pF = p(x | fF)
e(x)

Classifier Encoder

x

arg max{p1, ..., pF}

x′

Figure 1: An illustration of the classification process. In this report we present a
classifier based on neural networks.

The simplest linear model of regression can be formulated as,

y(x,w) = w0 + w1x1 + · · · + wDxD .

This is also what is usually known as linear regression. While this model is
useful for some simple cases of data sets, notice that y is not only linear in w,
but also in our input vector x. To avoid this limitation in our linear model we
may introduce the notion of basis functions which we shall denote φ j, a set of
fixed non-linear functions on the input values, as follows:

y(x,w) = w0 +

M−1∑
j=1

w jφ j(x) .

Notice that the parameter w0 is special. It allows for a specific offset in the
values of y and is called the bias parameter. To see why the bias parameter is
useful, consider the case where M = 2 and φ j is the identity function, and we
wish to approximate the linear function y(x) = 1 + 2x. In that case our model
of regression will be y(x,w) = w0 + w1φ1(x). Without the bias parameter we
would never be able to approximate our function exactly, no matter what we
choose as w1.

As we shall see later this concept is also used in neural networks. For
convenience we may define φ0(x) = 1 to obtain the more readable version,

y(x,w) = wᵀφ(x) .

This is our generalized linear model of regression, and we shall later describe
how to expand this model to a feed-forward neural network for regression.

While our model now allows our function y(x,w) to be a non-linear function
of the input vector x, we now have the challenge of choosing a suitable φ.
Neural networks accomplish this problem by estimating the basis functions.
We will look into how this is done in the next section.

2.2 Neural Networks

A neural network consists of two basic components: neurons and signals. These
are then composed to form a complex network of interacting entities. A neuron
is an isolated unit, which fires a signal when a certain threshold is reached. The

4

input and output of a neuron is a signal of some strength, modelled by a weight.
These concepts, units and weights, form the basis of a neural network.

In this section we will describe feed-forward neural networks. These are
special neural networks with some constrains on the layout of the network,
that is how the units are arranged and which weights are present.

As discussed in the previous section linear models for regression can be
expressed as

y(x,w) = wᵀφ(x) . (1)

This may be extended to classification by evaluating a function on the result of
the above equation. Hence, equation 1 may be rewritten as

y(x,w) = f (wᵀφ(x)) (2)

where f is a sigmoidal activation function (discussed in section 2.2.3) in case of
classification and simply the identity function when doing regression.

As described in Bishop (2006, p. 225–228) neural networks generalize linear
models for regression and classification such that we do not need to know the
basis functions φ. Instead, we can make them depend on some parameters that
are adjusted like the weights w using training. In this way the neural network
itself approximates the basis functions exactly like it approximates the weights.
A neural network is constructed as follows:

First we construct M linear combinations of the input x1, x2, . . . , xD as

a j =

D∑
i=1

w(1)
ji xi + w(1)

j0 (3)

for j = 1, . . . ,M. Note that we have reintroduced the biases. We will show how
to remove those for neural networks later. The superscript (1) indicates that
the weights correspond to the first “layer” of the network. a1, . . . , aM are called
activations and these are passed to a activation function h, so we obtain

z j = h(a j) .

z1, . . . , zM are called the hidden units of the neural network. These values
are used are then used as input to the second layer of the network. So, using
equation 1 we obtain

ak =

M∑
j=1

w(2)
kj z j + w(2)

k0 (4)

for k = 1, 2, . . . ,K where K is the number of outputs.
Again we apply an activation function σ on the above values. As for linear

models this can be either the identity function if we are doing regression or a
sigmoid function when dealing with classification. Thus, for regression we set
the output yk = ak and for classification yk = σ(ak).

We can now combine the above steps and obtain the following function

yk(x,w) = σ

 M∑
j=1

w(2)
kj h

 D∑
i=1

w(1)
ji xi + w(1)

j0

 + w(2)
k0

 . (5)

5

As it can be seen this looks similar to equation 2. We have simply added an
extra layer of computation that estimates the basis functions. Thus, a neural
network is a nonlinear function mapping from a set of input values x1, . . . , xD
to a set of output values y1, . . . , yK, controlled by a set of adjustable weights w.
Next, we will absorb the weights into the model like we did in equation 2 to
make the formula a bit simpler.

2.2.1 Absorbing the Bias Parameters Into the Model

To simplify the model above we may absorb the weights into the model such
that we do not need to explicitly take care of them. This is similar to what we
did in 2.1. If we create a new input unit x0 = 1 equation 3 may be written as

a j =

D∑
i=0

w(1)
ji xi .

Likewise, if we create another hidden unit z0 = 1 equation 4 becomes

ak =

M∑
j=0

w(2)
kj z j .

Thus, using the two expressions above and using matrix multiplication instead
of summation, the network function from equation 5 can be written as follows:

y(x,w) = σ
(
w(2)ᵀh

(
w(1)ᵀx

))
which look quite similar to equation 2 (Bishop, 2006, p. 229).

2.2.2 Graphical Representation

Using the notion of units and weights we can represent equation 5 graphically
as shown in figure 2. The units on the left correspond to the input values that
are then propagated forward to the hidden layer, and the hidden units are
propagated to the output units. In this example we have a single hidden layer.
In general we may have any number of hidden layers each with an arbitrary
number of hidden units.

2.2.3 Choice of Activation Functions

The activation functions are a continuous non linear functions. The continuity
of the function ensures that it is differentiable with respect to the parameters
of the model. This is crucial when training the network as we shall see in
section 2.3.1.

The functions are chosen to be non linear, since a number of linear trans-
formations can be turned into a single linear transformation. Hence, if we use
linear activation functions we may as well remove every hidden layer.

Furthermore, the activation functions are chosen to be sigmoidal functions.
These are simply functions that are S-shaped. Typically the activation functions

6

xD

...

x1

x0

zM

...

z1

z0

yK

...

y1

w(1)
MD w(2)

KM

Figure 2: A feed-forward neural network. As input we take a D dimensional
vector x corresponding to x1, . . . , xD. x0 is always set to 1 such that
the bias parameters consists of the weights w(1)

j0 . Likewise we have M

hidden units and an exstra unit z0 creating the biasas w(2)
k0 .

of the hidden layers are chosen to be a sigmoid function such as the logistic
sigmoid defined as

h(a) =
1

1 + exp(−a)
.

For binary classification problems the activation function σ of the output units
are also chosen to be the logistic sigmoid function whereas for multi class
problems we use the function

σ(ak) =
exp(ak)∑
j exp(a j)

which is known as the soft-max function (Bishop, 2006, p. 198, 228–229).

2.2.4 Capabilities of Neural Networks

Finally, we may question to approximation capabilities of neural networks.
Informally, the universal approximation theorem states that a feed-forward
neural network of one hidden layer with a fixed number of hidden units
can approximate an arbitrary continuous function. This theorem was first
shown by Cybenko (1989) with a few assumptions on the activation functions.
Later it was shown by Hornik (1991) that the result is independent of these
assumptions.

2.3 Network Training

Training a neural network is the process of adjusting the weights such that
a given error function is minimized. One way to do this is to first feed data
through the network, calculate the error function on the output, and then adjust
the weights “backwards” in the network using some measure derived from the
error. This method is called back propagation.

7

In this section we shall see how the back propagation process can be derived
for feed-forward neural networks and how the weights can then be adjusted
using the obtained gradient. Finally, we present another approach to adjusting
the weights, known as resilient back propagation, which in many practical use
cases can reduce the time to convergence and improve training.

2.3.1 Back Propagation

Back propagation is a method for feed-forward neural networks, to evaluate
the gradient of the error, such that the weights of the network can be adjusted
accordingly. To obtain the gradient we must derive the error of the error
function. This can be done separately for each input pattern. That is, we wish
to iteratively minimize En(w) for pattern n (Bishop, 2006, p. 241–244).

First, let us consider the error of a single unit. Since En depends on the
weight w ji only via the summed input a j to unit j we can use the chain rule on
the derivative of En with respect to a weight w ji,

∂En

∂w ji
=
∂En

∂a j

∂a j

∂w ji
.

Let δ j ≡ ∂En/∂a j where δ j can be thought of as the error of unit j. Recall that,

a j =
∑

i

w jizi .

Differentiating a j with respect to w ji we obtain,

∂a j

∂w ji
= zi .

The derivative of En with respect to w ji is then given by,

∂En

∂w ji
= δ jzi .

This means that we can evaluate the derivative by using the δ at the output
end of the weight multiplied by the z at the input end of the weight, where
the weight is represented by the edge w ji. We have now obtained a way of
evaluating the gradient. Since zi is given by forward propagation, we only
have to compute δ for all hidden and output units in the network.

Let us first consider the error of the output units in the neural network. For
linear output units this is given by,

δk = yk − tk .

In order to evaluate δ for every hidden unit we need the back propagation formula
which is given by (Bishop, 2006, p. 244),

δ j = h′(a j)
∑

k

wkjδk ,

where we sum over the error of all units to which unit j has an edge. That is,
the value of δ for hidden unit j can be obtained by way of the δ in the layer to

8

the right along with the weights to their respective units, and the activation
of hidden unit j. This approach is called on-line training since the weights are
adjusted for every pattern one at a time.

A variation is to cycle through the entire data set, accumulating the error
one the way, and then adjust the weights accordingly after each “epoch”. That
is,

∂E
∂w ji

=
∑

n

∂En

∂w ji
.

Techniques that use this approach are known as batch methods.

2.3.2 Gradient Descent

Gradient descent (Bishop, 2006, p. 240) is the process of adjusting the weights of
the neural network to reach a minima using the gradient by taking a small step
η in the direction of the negative gradient. This is the final step in the training
process as we have now evaluated the gradient using back-propagation and
are able to adjust the weights using the gradient information. That is,

w(τ+1) = w(τ)
− η∇En

(
w(τ)

)
where η > 0 is a fixed number known as the learning rate used through training.
Using a fixed learning rate in this way turns out to be problematic. If the
learning rate is set too high, one can potentially continuously “overshoot”
the local minimum resulting in poor convergence. On the other hand, if the
learning rate is set very low convergence can take a long time.

We shall now describe an alternative method of adjusting the weights which
improves the stability and convergence-time of the training process.

2.3.3 Resilient Back Propagation

As mentioned earlier using of a global learning rate has a number of drawbacks.
If set too high it may cause the algorithm to oscillate around a local minimum.
If set too low, convergence may take a long time. In resilient back propagation
described by Igel and Hüsken (2003) and Riedmiller (1994), the learning rate is
replaced with an adjustable step size ∆(τ)

i j for each unit. In each time step the
weights are then adjusted by,

w(τ+1)
i j = w(τ)

i j + ∆(τ)
i j .

The step size ∆i j is adjusted by

∆(τ)
i j =

min(η+∆(τ−1)

i j ,∆max) if ∂E(τ−1)

wi j

∂E(τ)

wi j
> 0

max(η−∆(τ−1)
i j ,∆min) if ∂E(τ−1)

wi j

∂E(τ)

wi j
< 0

∆τ−1
i j otherwise

where 0 < η− < 1 < η+ denotes predefined constant step factors. In other words,
if the current partial derivative does not change sign the step size is increased
by some factor up to a given maximum. If the partial derivative changes sign,

9

the local minimum has been stepped over so the step size is decreased. ∆w(τ)
i j is

then calculated as,

∆w(τ)
i j =

− sign
(
∂E(τ)

∂wi j

)
∆(τ)

i j if ∂E(τ−1)

wi j

∂E(τ)

wi j
≥ 0

−∆w(τ−1)
i j if ∂E(τ−1)

wi j

∂E(τ)

wi j
< 0

(6)

where the sign function returns +1 i its argument is positive, −1 if its argument
is negative, and 0 otherwise.

In addition, the error derivative ∂E(τ)

∂wi j
is set to 0 if ∂E(τ−1)

wi j

∂E(τ)

wi j
< 0 which avoids

a step size update on the next iteration. This procedure along with one in 6
is known collectively as weight backtracking, because it effectively reverts the
weight update if the gradient changes sign.

It can be argued (Igel and Hüsken, 2003) that the additional weight back-
tracking heuristic is somewhat arbitrary because even though the change in
sign of the gradient implies that a local minimum has been stepped over, the
backtracking does not take into account whether or not the error has decreased
as a result of the weight update. A popular variant known as Rprop- has been
proposed which always chooses the first case of 6 regardless of whether the
gradient changes sign.

3 Implementation

In this chapter we shall describe the choice of network architecture used in our
classifier, nNRPS. The network architecture described has some limitations,
most importantly the number of input units in the neural network is fixed at
construction time. Thus, to accept an arbitrary input sequence, we must encode
all sequences to a vector of fixed dimensionality. We describe our encoding
and give a short analysis of its usefulness in this application domain.

Our classifier consists of a single program written in Python 2.7.5 which
allows the user to train a neural network, classify sequences given some trained
neural network, and perform simple cross-validation. For a detailed description
of how to run our programs we refer to chapter C in the appendix.

3.1 Network Architecture

The network architecture used in our classifier is inspired by the architecture
presented by Wu et al. (1995), which is a feed-forward neural network with
one input layer, three hidden layers of 10 hidden units, and an output layer.
All hidden units use the sigmoid hyperbolic tangent activation function. This
architecture is successfully applied to protein classification.

For the classification problem it is useful to have one output unit per family,
which in our case results in 30 output units. Using the soft-max activation
function on the output units means that we may interpret the value of these
units as a posterior probability of the sequence belonging to each family. We
use Rprop-, as previously described, to adjust the weights.

In section 3.2 we shall see how the number of input units is chosen, since this
depends on the chosen encoding. The neural network topology is illustrated in
figure 2.

10

During the cross-validation process we experimented with a variety of
configurations. All experiments showed no performance increase if the number
of layers or units were increased. In fact it seems that one hidden layer with 10
hidden units resulted in the best performance. Therefore, this is the architecture
that we refer to in the rest of the report.

3.2 Encoding of Input

As described in section 1 our data set consists of a number of amino acid
sequences. These sequences vary in length and thus we cannot build a single
neural network for them all, since the neural network would then need a
variable number of input units.

To circumvent this limitation we use an encoding which reduces each
sequence to a fixed-length vector. Such an encoding inevitably looses some
information about the sequence since it corresponds to dimensionality reduction.
A good encoding should throw away as little information as possible and
maintain as much of the variability between families as possible.

Our encoding is based on the concept of n-grams, also known as k-mers.
We define the n-grams of a sequence to be the set of all sub strings of length n
of a string x.

For an alphabet Σ we have D = |Σ|n possible n-grams, so we construct a
vector x′ of D dimensions such that x′i is the number of occurrences of the i’th
n-gram. This vector is then normalized such that 0 ≤ x′i ≤ 1 by dividing by D.
We denote this encoding x′ = en(x).

Thus, we able to encode an arbitrary string over Σ to a vector of D dimensions.
For our data set we have |Σ| = 20 and n = 2 (see chapter 4) which yields
D = 202 = 400 possible n-grams. The network architecture described above is
then extended such that we have 400 input units.

This encoding corresponds to the encoding presented by Wu et al. (1995),
but without Singular Value Decomposition (SVD) to further reduce the size of
the vector. While this might be valid approach to improving performance of
the classifier, we did not have time to implement this.

4 Evaluation

In this section we will discuss our evaluation of nNRPS. We use a typical k-fold
cross-validation approach and compare it to the performance of other classifiers
evaluated on the same data set.

A k-fold cross-validation partitions the data set into k parts such that each
family is represented proportionally to its representation in the entire data
set. The classifier is then trained using k − 1 parts and the last part is then
classified. This is done k times. The accuracy is measured by the number
of correct classifications. This test is more conservative than a leave-one-out
(LOO) test, since the data used for training is significantly smaller. In this
project k = 5 was used.

11

1 2 3 4
0

0.2

0.4

0.6

0.8

n

A
cc

ur
ac

y

top-three exact

Figure 3: Here we illustrate the accuracy of the classifier for 1, 2, 3, and 4-grams.
Observe that considering the three best predictions does not yield a
high increase in accuracy, meaning that predictions are either right or
very wrong.

4.1 Performance

As previously described we encode the sequences using n-grams. We have
evaluated the performance of the classifier using values of 1, 2, 3, and 4-grams.
For 5-grams the network became too big to be computable on a normal computer.
In the tests we have made 150 iterations for training.

For each n-gram size we have tested if the prediction was “exactly” correct,
that is if the output node with the largest value corresponds to the actual family.
Further we have tested if the actual family is in the top three largest valued
output nodes to see if we “almost” classify the sequences correctly. The results
can be seen in figure 3 and table 1 on page 16.

As seen larger n-grams does not make the prediction better. The best result
is obtained using 2-grams. If we look at the top three, the accuracies grow by
about ten percentage points, so looking at the top three of course makes the
predictions better, but there are still many sequences that get classified as a
family not in top three.

To see how the neural network performs as a function of the number of
iterations used during training, we have performed 5-fold cross-validation for
i = {16, 32, 64, 128, 256} iterations. To validate that the results were consistent
the experiment was repeated five times. The results of this experiment is shown
in table 2 and visualized in figure 4 for 2 and 3-grams.

For n = 2 the plot clearly illustrates how the neural network training reaches
a point of over-training after 128 iterations. For n = 3 this event occurs earlier
in the training process after 16 iterations.

12

16 32 64 128 256

0.6

0.7

0.8

Iterations

A
cc

ur
ac

y

2-gram 3-gram

Figure 4: This figures illustrates the performance of the classifier for 2 and
3-grams as a function of the number of iterations. For 2-grams we
over-train at 128 iterations, while it happens much earlier for 3-grams
at 32 iterations.

4.2 Confusion Matrix

To further analyse the prediction power of our classifier we have constructed a
confusion matrix (see table 4 on page 19). The rows and columns of the confusion
matrix represent the 30 families of the data set such that cell (i, j) contains
the number of sequences which true family is i and was classified as j. The
diagonal thus contains the number of correctly predicted sequences for each
family.

Thus, it is interesting to observe the confusion matrix from two points of
view: row and column-wise. Observing row i tells us the distribution of the
predictions of sequences in family i. An interesting example is the F and Y
families for which predictions are spread over a wide range of families.

This observation corresponds to what can be observed in the phylogenetic
tree found in figure 6 which might indicate that a classifier cannot improve
much over the current results with the given data set.

If we observe the confusion matrix column-wise we can see which family
“swallows” predictions in the classifier. Again, F is an interesting example
since most entries in the F-column are non-zero. That is, a lot of sequences
are wrongly classified as F which is also consistent with the distribution of
sequences of the F family in figure 6.

5 Previous Works

Prieto et al. (2012) presents NRPSsp, a predictor based on profile HMMs.
Instead of using k-fold cross-validation, they have used leave-one-out for their
analysis. Thus the results should be taken with a grain of salt.

13

In the article they compare NRPSsp to NRPSpredictor2 (Röttig et al., 2011).
The training data set is not the same for those two, since new sequences have
been added to the on-line databases, so the predictors are not fully comparable.
By performing leave-one-out NRSPsp obtains an accuracy of 86.4%, while
NRPSpredictor2 only reaches 77.4% (Prieto et al., 2012).

Søndergaard and Andersen (2013) presents pyNRPS, a predictor also based
on profile HMMs. By making a 5-fold cross-validation on exactly the same
data set as we have used in this project, pyNRPS obtains an accuracy of 86.0%.

By making a five-fold validation we obtain an accuracy of 80.5%, which
is not as good as either NRPSsp or pyNRPS, but we believe that further
optimizations may increase the performance of the classifier.

As seen in table 3 at page 17 some of the large families like A and dhb
are predicted almost correct, whereas many of the smaller families have an
accuracy below 50%. To make an overview over how well we classify when
looking at families seperately, we have made the histogram shown in figure 5.
This figure shows for each 5% interval, i.e. [0–5], [5–10], . . . , [95–100], how
many familes that have an accuracy inside that interval. Ideally all families
would have an accuracy of approximately 80%, but as seen it varies at lot. We
have made the same experiment for pyNRPS, which also have a large variation
of accuracy between families, although it is defenitely better than nNRPS.

0 20 40 60 80 100
0

2

4

6

Accuracies

N
um

be
r

of
Fa

m
ili

es

nNRPS

0 20 40 60 80 100
0

2

4

6

Accuracies

N
um

be
r

of
Fa

m
ili

es

pyNRPS

Figure 5: This figure shows for intervals of size 5 between 0 and 100% the
number of families with a prediction accuracy inside each interval.

6 Conclusion

In recent years there has been a rapid expansion the amount of data that
needs to be processed and analysed in the field of bioinformatics. Part of this
immense data flow consists of the NRPS sequence data which we consider in
this report and which have recently gained notice from the pharmaceutical
industry, among others, because of the diversity of substrates that these NRPSs
produce.

In this project we have considered the problem of predicting the product of
a given NRPS module, based on the sequence of its A-domain. Because the
input sequences can have variable length and a neural network has a fixed
number of input units, each sequence is encoded by an approach based on

14

n-grams of the sequence. A neural network was then trained to predict the
product of the encoded sequences. Finally, five-fold cross validation was used
to evaluate the result.

Experiments showed that varying the number of hidden units and layers
made little difference in the prediction power of the neural network. Thus, they
have not been included in this report.

Wu et al. (1995) suggests using Singular Value Decomposition (SVD) to
reduce the dimensionality of the input vector. We did not implement this due to
time constraints. However, one item of future interest may be to perform SVD
on each family. When a new sequence must be encoded, it is then encoded once
for each family using the respective SVD decomposition, and each encoded
sequence then is propagated through the network simultaneously. This might
help capture important features of each family better than our current approach.

The classifier presented here achieves an accuracy of 80.5% in its current
state, but is inferior to the Profile HMM approaches presented by Søndergaard
and Andersen (2013) and Prieto et al. (2012) which achieve accuracies of
approximately 86%. However, we believe that the application of SVD and
fine-tuning of the number of iterations used to train the network might increase
the performance of our classifier so that it can compete with the Profile HMM
approaches. Finally, the phylogeny presented in this report suggests that
the data set may be too small and inconsistent to substantially improve the
performance of classification based on any machine learning approach.

15

A Accuracy Results

n-gram Type True False Accuracy

1-gram exact 1008 538 0.652
2-gram exact 1173 373 0.759
3-gram exact 1063 483 0.688
4-gram exact 964 582 0.624
1-gram top-three 1127 419 0.729
2-gram top-three 1287 259 0.832
3-gram top-three 1176 370 0.761
4-gram top-three 1118 428 0.723

Table 1: This table shows the results of 5-fold cross-validation for n = {1, 2, 3, 4}.
With exact we only consider the single most highly rated result, while
top-three considers the three most higly rated results. If one of them is
the true result, it is counted as a correct prediction.

n-gram i True False Accuracy

2 16 854 692 0.552
2 32 1055 491 0.682
2 64 1176 370 0.761
2 128 1212 334 0.784
2 256 1156 390 0.748
3 16 1067 479 0.690
3 32 1245 301 0.805
3 64 1212 334 0.784
3 128 1077 469 0.697
3 256 1053 493 0.681

Table 2: This table illustrates the accuracy for various n and number of iterations
i. It is slightly surprising that n = 3 performs better than n = 2 for i = 32.
This may be due to over-fitting when i > 32.

16

Product True False Accuracy

A 604 14 0.98
C 23 14 0.62
D 16 12 0.57
E 10 22 0.31
F 49 50 0.49
G 16 11 0.59
I 8 7 0.53
K 4 4 0.50
L 30 11 0.73
N 13 9 0.59
P 12 10 0.55
Q 5 5 0.50
R 4 2 0.67
S 19 15 0.56
T 30 9 0.77
V 24 14 0.63
W 6 10 0.38
Y 5 17 0.23
aad 54 16 0.77
beta-ala 0 5 0.00
bht 4 5 0.44
dab 9 3 0.75
dhb 258 8 0.97
dhpg 6 3 0.67
dht 1 3 0.25
horn 3 2 0.60
hpg 21 1 0.95
hyv-d 3 1 0.75
orn 6 11 0.35
pip 2 7 0.22

Table 3: Per family accuracies for a 5-fold cross-validation with 3-grams and 32
iterations.

17

B Confusion Matrix

A C D E F G I K L N

A 604 0 2 0 5 4 0 0 1 0
C 1 23 0 0 8 0 0 0 0 0
D 0 0 16 0 10 0 0 0 0 0
E 2 4 1 10 9 1 0 0 1 1
F 5 2 7 2 49 6 0 1 10 1
G 0 0 2 1 5 16 0 0 1 1
I 0 0 0 0 1 0 8 2 4 0
K 0 0 0 0 3 0 0 4 0 0
L 0 0 1 0 7 0 1 0 30 0
N 0 1 0 0 6 1 0 0 1 13
P 1 0 2 0 5 0 0 0 1 0
Q 0 0 0 0 3 0 0 0 1 0
R 0 0 0 0 1 1 0 0 0 0
S 0 0 0 0 5 0 0 1 0 0
T 0 1 1 0 3 0 0 0 0 2
V 0 0 0 0 5 1 0 0 5 0
W 0 0 1 0 5 2 0 0 0 0
Y 0 0 1 0 7 0 0 0 3 1
aad 2 0 2 0 5 0 0 0 0 0
beta-ala 1 0 0 0 1 0 1 0 0 0
bht 0 0 0 0 2 0 1 0 0 0
dab 0 0 0 0 2 0 0 0 0 1
dhb 1 0 0 0 5 0 0 0 0 0
dhpg 0 0 2 0 0 0 0 0 0 0
dht 0 0 0 0 0 0 0 0 0 0
horn 0 0 0 0 0 0 0 1 0 0
hpg 0 0 0 0 0 0 1 0 0 0
hyv-d 0 0 0 0 1 0 0 0 0 0
orn 3 0 1 0 6 0 1 0 0 0
pip 0 0 1 0 2 1 0 0 0 0

P Q R S T V W Y aad beta-ala

A 1 1 0 0 0 0 0 0 0 0
C 0 0 0 0 0 3 0 0 1 0
D 0 0 0 0 1 0 1 0 0 0
E 3 0 0 0 0 0 0 0 0 0
F 1 4 0 2 2 0 3 1 0 0
G 1 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0
K 0 1 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 1 0 0
N 0 0 0 0 0 0 0 0 0 0
P 12 0 0 0 0 0 0 0 0 0
Q 0 5 0 1 0 0 0 0 0 0
R 0 0 4 0 0 0 0 0 0 0
S 0 1 0 19 1 0 5 2 0 0
T 0 0 0 0 30 0 0 0 0 0
V 1 0 0 0 0 24 1 0 0 1
W 0 1 0 0 0 0 6 0 0 0
Y 0 0 0 1 0 1 0 5 0 0
aad 2 3 0 0 1 0 0 0 54 0
beta-ala 0 0 0 1 0 0 0 0 0 0
bht 0 0 0 0 0 1 0 1 0 0
dab 0 0 0 0 0 0 0 0 0 0
dhb 0 0 0 0 0 0 0 0 0 0
dhpg 0 0 0 0 0 0 0 0 0 0

18

dht 0 0 0 0 3 0 0 0 0 0
horn 0 0 0 1 0 0 0 0 0 0
hpg 0 0 0 0 0 0 0 0 0 0
hyv-d 0 0 0 0 0 0 0 0 0 0
orn 0 0 0 0 0 0 0 0 0 0
pip 1 0 0 0 0 1 0 0 0 0

bht dab dhb dhpg dht horn hpg hyv-d orn pip

A 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 1
D 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 3 0
G 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 1 0 0 0
N 0 0 0 0 0 0 0 0 0 0
P 0 0 0 0 0 0 0 0 0 1
Q 0 0 0 0 0 0 0 0 0 0
R 0 0 0 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 0 0 0
T 0 0 0 0 2 0 0 0 0 0
V 0 0 0 0 0 0 0 0 0 0
W 0 0 0 0 0 0 0 0 0 1
Y 3 0 0 0 0 0 0 0 0 0
aad 0 0 0 0 0 0 0 0 1 0
beta-ala 0 0 0 0 0 0 0 0 0 1
bht 4 0 0 0 0 0 0 0 0 0
dab 0 9 0 0 0 0 0 0 0 0
dhb 0 0 258 0 0 0 0 0 0 2
dhpg 0 0 0 6 0 0 1 0 0 0
dht 0 0 0 0 1 0 0 0 0 0
horn 0 0 0 0 0 3 0 0 0 0
hpg 0 0 0 0 0 0 21 0 0 0
hyv-d 0 0 0 0 0 0 0 3 0 0
orn 0 0 0 0 0 0 0 0 6 0
pip 0 0 1 0 0 0 0 0 0 2

Table 4: Confusion matrix for a 5-fold cross-validation for n = 3 and i = 32.
The diagonal is marked in bold. The confusion matrix shows how
many sequences were classified as each family. E.g. we see that
sequences of the F family is mainly predicted correctly, and that the
wrong predictions are spread over a wide range of other families.

C Using the Classifier

The classifier presented in this report, nNRPS, is written in Python 2.7.5 and
requires the PyBrain machine learning library which can be obtained from
http://pybrain.org. PyBrain can easily be installed using the easy_install
or pip commands which are part of most Python distributions.

The included archive consists of a number of scripts and data files which
make up nNRPS. The archive can also be downloaded from http://users-cs.
au.dk/das/nNRPS.zip. The main script is the nnrps.py for which usage infor-
mation is included below.

19

$./nnrps.py -h
usage: nnrps.py [-h] [-v] [-d DIRECTORY] {train,classify,validate} ...

$./nnrps.py train -h
usage: nnrps.py train [-h] [-i ITERATIONS] [-o OUTPUT]

$./nnrps.py classify -h
usage: nnrps.py classify [-h] [-n NETWORK] [-f FILE]

$./nnrps.py validate -h
usage: nnrps.py validate [-h] [-n NGRAM] [-k FOLDS] [-i ITERATIONS] [-t]

In addition to the scripts we also include the sequences directory which
contains the entire data set.

20

D Phylogeny

dhb/1.1
pip/1.1

dhb/1.2

dhb/9
dhb/1.3

dhb/4

dhb/1.4

dhb/230

dhb/7.1

dhb/1.5

dhb/1.6

dhb/7.2

aad/1.2

F/1.3

dhb/1.7

dhb/1.8

F/3

E/1.1

hyv-d/1

F/1.4

F/4.1

aad/1.1

E/4.1

aad/3

L/3.1

E/2.1

A/1.1

E/1.2

F/1.6

A/3

A/1.2

F/1.5

L/1.1

aad/1.3

F/1.7

E/1.3

F/1.1

A/2.1

A/591

F/1.2

Y/1.1

W
/1.1

Y/1.2

F/1.8

W
/2.1

F/1.9

S/1.1
orn/1.1

E/1.4
E/1.5

F/2.1
A/1.3

F/1.10
F/1.11
K/1.1
F/8

F/1.12
Y/1.3

aad/1.4
F/1.14
V/1.3

hyv-d/3
W

/2.2
P

/2.1
A

/2.2
A

/1.4
I/1.1

F/1.15
F/1.16
P

/1.1
pip/1.2
P

/1.2
aad/1.5
V

/1.4
C

/1.3
A

/1.5
F

/2.2
V

/1.1
C

/1.1
V

/1.2
aad/2
C

/1.2
F

/1.13
Y

/1.5
bht/1

Y
/1.6

Y
/1.7

bht/2
Y

/1.8
bht/6

F
/1.29

W
/1.2

F
/1

.3
0

W
/1

.3
W

/2
.4

F
/2

.5
Y

/1
.9

W
/1

.4
I/1

.2
F

/2
.6

W
/1

.5
Y

/2
.1

P
/1

.3
L/

1.
2

K
/2

.2
D

/1
.7

T
/2

.3
T

/1
.4

T
/9

dh
t/4

T
/2

.2
T/

1.
3

T/
1.

5
S

/1
.5

T/
6

T/
3

T/
2.

1
T/

1.
2

T/
1.

6
T/

1.
7

F/
1.

28
T/

4
F/

1.
27

A/
1.

6
T/

1.
1

A/
1.

7
G

/1
.1

A/
2.

4
or

n/
1.

5
F/

2.
7

A/
1.

8
F/

1.
31

da
b/

1.
1

N/1
.1

N/1
.2

N/1
.3

E/2
.3

D/3
.1

E/1.
8

D/5.
1

D/3.
2

N/2

N/1.4

A/2.3

D/1.6

N/3

beta-ala/1.3

K/1.2

R/1.1

horn/4

orn/1.4

K/2.1

F/1.26

F/1.23

D/1.3

D/1.4

F/1.24

F/1.25

D/1.5

E/1.7

D/1.2

dhb/1.9

F/1.22

F/4.2

E/1.12

C/1.7

C/2.2

C/2.3

C/1.8

E/1.13

C/2.4

E/1.11

C/3.1
C/1.6

E/2.4
C/4

C/1.5
E/1.10

C/2.1
C/1.9
T/1.8
C/1.10
F/1.32
E/1.9
T/2.4
C/3.2
F/2.9
G/1.4
G/1.5
G/1.6
G/2
G/12
F/1.34
G/3
F/1.33

G/1.2
F/2.8
G/1.3

F/1.35
S/2.6

Q/1.1S/1.6F/1.36L/1.3R/4
F/1.37P/2.2G/1.7orn/1.6D/1.8aad/1.7orn/1.7F/1.38orn/1.8F/1.39F/1.40V/3orn/1.9I/2.1D/1.9F/1.41E/1.14F/1.42N/1.5F/1.43

F/1.44Y/2.2Y/1.10
orn/1.10

W
/3F/1.45

P/8L/17G
/1.8

P/1.4

pip/1.4

P/1.5P/1.6

P/1.7

pip/1.5

pip/4

F/1.46

pip/1.3

A/1.9

P
/1.9

A
/1.10

A
/1.11

A
/1.12

A
/1.13

A
/1.14

L/4.1

D
/2dab/4.1

R
/1.2

P
/1.8

V
/1.5

C
/1.11

aad/1.8

F
/1.47

D
/1.10

Q
/1.2

dab/2

N
/1.6

S
/1.7

aad/1.9

N
/1.7

S
/1.8

F
/1.19

S
/2.3

S
/3.1

S
/1.2

S
/2.1

Y
/1.4

S
/2.2

S
/1.3

F
/1

.2
0

S
/2

.4
ho

rn
/1

S
/3

.2
D

/1
.1

S
/1

.4
C

/1
.4S
/6

S
/2

.5

F
/1

.2
1

or
n/

1.
3

F
/2

.4

F
/1

.1
7

be
ta

-a
la

/1
.1

F
/1

.1
8

E
/1

.6

be
ta

-a
la

/1
.2

or
n/

1.
2

be
ta

-a
la

/2

aa
d/

1.
6

aa
d/

49

E
/2

.2

F/
2.

3

F/
1.

51

Y
/1

.1
1

L/
3.

3

Y
/2

.3Y
/4

Q
/1

.3F/
5

A/
1.

16

G
/1

.1
0

F/
1.

50S/
2.

7Q
/2E/
4.

2Q
/5

E/
1.

16F/
1.

52K/1
.4D/5

.2

F/
1.

53N/9N/1
.8aa
d/

7C/7V/7T/1.
9K/1.

3
orn

/1.11E/1.15V/1.11
dab/4.2orn/4orn/2V/1.6C/1.12V/1.7hpg/1dab/1.2V/2.2hpg/6dhpg/3hpg/11hpg/4

L/1.6dhpg/6V/1.8I/1.3
L/1.7
I/2.2

I/3.1
L/3.2

V/1.9
I/3.2
V/8V/1.10

F/1.49
V2/1

I/2.3
V/5

F/2.10
P/1.10
L/1.5

A/1.15
V/2.1
G/1.9
L/4.2

F/1.48
L/1.4

F/2.11

Figure 6: Condensed phylogeny built from the data set. Each sequence was
renamed to its family name to make it easier to locate families in the
tree. We have recursively merged all leafs which had the same family
and added the number of merged leafs to the name. That is, dhb/7.2
means that 7 leafs were merged, and that this is the 2nd occurence of
dhb in the tree. Branch lenghts are arbitrary.

21

Bibliography

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

Sean R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763,
1998.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

Christian Igel and Michael Hüsken. Empirical evaluation of the improved
rprop learning algorithms. Neurocomputing, 50:105–123, 2003.

Carlos Prieto, Carlos García-Estrada, Diego Lorenzana, and Juan Francisco
Martín. Nrpssp: non-ribosomal peptide synthase substrate predictor. Bioin-
formatics, 28(3):426–7, Feb 2012. doi: 10.1093/bioinformatics/btr659.

Martin Riedmiller. Rprop-description and implementation details. Technical
report, 1994.

Marc Röttig, Marnix H Medema, Kai Blin, Tilmann Weber, Christian Rausch,
and Oliver Kohlbacher. Nrpspredictor2–a web server for predicting nrps
adenylation domain specificity. Nucleic Acids Res, 39(Web Server issue):
W362–7, Jul 2011. doi: 10.1093/nar/gkr323.

Dan Søndergaard and Torben Muldvang Andersen. Classification of non-
ribosomal peptide synthesis substrates with profile hidden markov models.
2013.

Cathy Wu, Michael Berry, Sailaja Shivakumar, and Jerry McLarty. Neural
networks for full-scale protein sequence classification: Sequence encoding
with singular value decomposition. Machine Learning, 21(1-2):177–193, 1995.

22

