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Abstract 
We developed, implemented and tested a stochastic context-free grammar (SCFG)-based method to classify

RNA molecules into structural classes, by training grammars to simultaneously recognize certain types of RNAs

and disrecognize other types. We tested our program using datasets obtained from thermodynamic (RNAfold)

predictions of structures for 6000 tRNA and 6000 miRNA sequences, and we believe our program serves as a

"proof  of  principle"  of  the  structural  classification  of  RNAs.  We  expect  that  incorporating  evolutionary

information from sequence alignments would significantly improve structure prediction. Furthermore, our

method can naturally be extended to involve a higher number of grammars. 

Introduction  
In recent years, considerable interest has developed to elucidate the relationships between RNA sequence,

structure and function, especially with regards to newly discovered roles of RNAs in cells and viruses. The

computational prediction of RNA structures plays a vital role in bridging the gap between sequencing and

experimental structure determination, and also facilitates the interpretation of experimental data.   

In 1994, stochastic context free grammars (SCFGs) were introduced in two papers (Durbin and Eddy, 1994 and

Sakikabara et al., 1994) to describe and analyze RNA structures. Knudsen and Hein (1999, 2003) coupled a

SCFG to molecular evolution and thus created a comparative predictor.  Most RNA gene predictors try to

classify a sequence into two classes: "RNA gene" and "background functionless DNA". However, it is often of

interest to classify an RNA gene/structure into functional classes. Typically, this is either done by homology (if

two sequences are similar, they probably have the same function) or by some additional classifier algorithm

(Batuwita and Palade, 2009 & Klingelhoefer, Moutsianas and Holmes, 2009). 

In this project, we attempted to classify RNA molecules into structural classes, by training SCFGs to recognize

some types of RNAs at the same time as disrecognizing others.  

Our stochastic context-free grammar  
RNA sequences are long chains of 4 nucleotides, and can be represented as a string consisting of 4 different

letters: A (adenine), C (cytosine), G (guanine) and U (uracil). RNA secondary structure (ie. the two-dimensional

folding of RNA molecules) can also be described as a string of symbols: the single-nucleotide symbol ".", and

the base-pairing symbols " (  ) " , where the  brackets indicate that the nucleotide in position of the first one

base-pairs with the nucleotide in the position of the second one. (Figure 1a) This description makes it possible

to produce RNA structures using context-free grammars.  

A formal grammar in language theory consists of: 

• a set of nonterminal symbols 

• a set of terminal symbols (disjoint from the set of nonterminals) 

• a set of production rules that map one string of symbols to another.  

A distinguished nonterminal symbol is the start symbol.  

A context-free grammar is a grammar in which every production rule maps a single nonterminal symbol into a

string of terminal  and nonterminal symbols.  In this  project we used a context-free grammar designed by

Bjarne Knudsen that can generate strings to describe all RNA structures that contain no pseudoknots and have

a minimum of 2 nucleotides in between any base-pairs. By assigning a probability to the different rules that

generate strings from the same nonterminal symbol, we obtain the stochastic context-free grammar:     

       

S -> LS prob. p1 L -> . prob. 1 - p2

S -> L prob. 1 -p1 F -> (F) prob. p3

L -> (F) prob. p2 F -> LS prob. 1 - p3
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Figure 1: Parsing RNA secondary

structure using a SCFG. 

(Figure dapted from “Final Project:

RNA Structure Prediction Using

SCFG - 2008”)

For every string produced by the grammar, a parse tree (an ordered, rooted tree) can be drawn that describes

which rules were used and in what order to generate the final string. The internal nodes of the tree are the

nonterminals of the grammar; the leaf nodes are terminal symbols (Figure 1c).  

For each parse-tree, we can define the probability of the structure s (a string over the alphabet { "." , "(" , ")" })

given a SCFG grammar G, P(s|G), as the product of the probabilities of all the rules in the grammar that were

used to generate the structure:

Definition 1:

For example, the probability of the structure given grammar for the parse-tree in Figure 1c is:

This  treatment  does  not  consider  the  fact  that  different  nucleotides  can  have  different  base-pairing

properties;  a  final  probability  allocated to  a  structure  should  be  sequence-dependent  if  the  sequence  is

known. Furthermore, in our classification problem we wish to determine if a sequence is best parsed by a

particular grammar, and it is therefore of interest to define the probability of a sequence given the grammar.

We therefore first define the probability of structure s given sequence x (a string over the alphabet {"a", "c",

"g", "u"}) as the product of the probabilities of single and dinucleotides that appear in the structure s of that

sequence:

Definition 2:

where     

The probabilities of single and dinucleotides are parameters of our distribution and are elements of a 4x1 and
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We now define the probability of a structure s given sequence x and grammar G:

Definition 3:

This  expression  incorporates  both  the  probabilities  in  the  grammar  and  the  probabilities  of  single-  and

dinucleotides as parameters, ie. P(s|x,G) is a function of (4-1)+(4-1)+(4x4-1)=21 parameters.

Using  this,  we  finally  define  the  probability  of  a  sequence  x given  grammar  G as  a  product  over  the

probabilities of all structures possible for that sequence under the grammar:

Definition 4:

Effectively, this expression gives the total probability that the sequence can be parsed to a structure using our

SCFG at all.   

The CYK and inside algorithms 
The pseudo code for both the CYK and inside algorithms in our implementation is found the Appendix A. Here

we only give a general overview of how the algorithms function. 

The Cocke-Younger-Kasami (CYK) algorithm is a dynamic programming algorithm that determines whether a

string can be generated by a context-free grammar, and if yes, how. This is known as parsing the string. The

standard CYK algorithm works for grammars that are in the CNF (Chomsky Normal Form). The SCFG grammar

described here is not in CNF, therefore we adapted the CYK algorithm to this particular grammar. The CYK

algorithm is recursive. (Figure 2)  

Figure 2: Illustration of the modified CYK recursion for our grammar. 
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In the standard CYK algorithm, we ask, for each substring: "Can this substring be generated from the given

nonterminal symbol (S, L or F)?" The full-length string can be generated from the nonterminal symbol S if and

only if there is a recursive partitioning of the sequence such that all substrings (and substrings of substrings,

etc.) can be generated by the grammar. RNA structures in practice can always be generated by the rules of this

grammar unless they have pseudoknots (base-pairing from inside a loop to somewhere outside the loop), or

fewer than two single bases in a loop (because the smallest number of bases that can be generated from the

non-terminal F is 2).  

For  SCFG  grammars,  the  CYK  algorithm  can  be  adapted  so  instead  of  a  TRUE/FALSE  result  it  gives  the

probability of a given structure (Definition 1). By choosing the parsing with the highest probability in each

iteration step, we can obtain the structure with the highest probability (the s for which P(s|G) is highest). If

sequence information is additionally known, the structure with the highest P(s|x,G) can be calculated in a

straightforward manner (Definition 3). 

 

A modification of the CYK algorithm (the so-called "inside algorithm") can be used to find P(x|G) (Definition

4). In  the  inside  algorithm,  instead  of  choosing  the  structure  with  the  highest  probability,  the  sum  of

probabilities for all substructures is calculated.  

Results and discussion

Investigating the space search

To investigate in what space the CYK algorithm needs to search for the best structure, we determined by

recursion  the  number  of  structures, Sn ,our  grammar  could  generate  as  a  function  of  structure  length  n.

Consider Sn as a function of Sk, for k < n: 

To obtain a structure of length n starting from a string of length n-1, there are two choices: 

addition of ".": addition of ")" paired with some "(": 

Because any hairpin loops must have a length of at least 2 bases, n-k-1 ≥ 2. 

Hence we obtain the following recursion:  

with S0 = S1 = S2 = S3 = 1. 

As shown by Nkwanta , 2006, 

PG(n)  can serve as a normalization constant when we wish to compare probabilities for predicted structures

for sequences of a particular length. 

One could attempt to derive a general formula for PG(n), according to the grammar's rules probabilities. We,

instead, used our program to show the general  shape of PG(n)  for different probabilities in our grammar

(Figures 3 and 4).
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Grammar 1 (G1) Grammar 2 (G2) Grammar 3 (G3) Grammar 4 (G4) 

Rule Prob. Rule Prob. Rule Prob. Rule Prob. 

S -> LS 0.5 S -> LS 0.4 S -> LS 0.7 S -> LS 0.2 

S -> L 0.5 S -> L 0.6 S -> L 0.3 S -> L 0.8 

L -> (F) 0.5 L -> (F) 0.4 L -> (F) 0.1 L -> (F) 0.2 

L -> . 0.5 L -> . 0.6 L -> . 0.9 L -> . 0.8 

F -> (F) 0.5 F -> (F) 0.4 F -> (F) 0.1 F -> (F) 0.2 

F -> LS 0.5 F -> LS 0.6 F -> LS 0.9 F -> LS 0.8 

Figure 3: PG(n) for the four analyzed grammars.

Figure 4: PG(n) for the four analyzed grammars - zooming in to n=14..20. The yellow curve (for G3) is not visible at this

zoom level, because its probability values are too large.

In all cases, the structure of length 1 (ie. the single unpaired nucleotide) has the highest probability, and the

general pattern is that longer structures have smaller total probabilities. This is because by the addition of

nucleotides, additional rules need to be used, increasing the number of probabilities to be multiplied together,

decreasing their product. An exception to this is n = 4: base-pairing first becomes possible with 4 nucleotides,
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ie. to use the rule L->(F). In the limit where structure length approaches infinity, all grammars predict zero

probability.  

Training the grammars 
To "train" a grammar, we wish to find the parameter values that maximize the probability of our input data.

Depending on the problem, the data can be:  

• one set of structures to recognize  

• two sets of structures ("type A" and "type B"), one to recognize and one to disrecognize 

• one set of sequences and corresponding structures to recognize 

• two sets of sequences ("type A" and "type B" and corresponding structures, one to recognize and one

to disrecognize.  

In the followings, we consider the model on each category individually.  

One set of structures ("independent" training) 

We wish to train one grammar to recognize  one set of structures,  ie.  to maximize  P(s1,...,sn|G) for input

structures s1,...,sn. (If given another set of structures to recognize by another grammar, the probabilities for the

second grammar can be determined independently of the first set of structures.) Since the input structures are

independent,  

 

According to Definition 1, this expression will have the following form:  

 

where f1..f6 are now the total number of times each rule was used in the parsing of all input structures.  

Maximizing this expression with respect to p1...p3 is straightforward and yields:  

Two sets of structures  

Here we consider the situation where we train a grammar to recognize "type A" structures and disrecognize

"type B" structures. (The "complementary" grammar will recognize "type B" structures and disrecognize "type

A"  structures.)  The  input  structures  are  assumed to  be  independent,  as  before.  Our  parameter  space  is

identical to what we had in the independent training with structures. The function to maximize, however, is

not straightforward. We have tested two different functions, of the following form:  

the "bad" input structures (the structures to disrecognize).  

"Times 1 minus" function   

with the notation as in the "minus" model.  
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We  used  numerical  routines  (NLP  command)  in  the  Optimization  package  of  Maple  to  maximize  these

functions (we determined frule and grule from our datasets), specifying that all parameters are defined only in

the real domain and over the interval [0, 1).  

Testing of models with only structures as input 

Once  the  parameters  of  the  two  grammars  were  determined  for  all  three  "structure-only"  models

("independent", "minus", "times 1 minus"), we tested the ability of our program to train two grammars and

predict the type of arbitrary input structures. 

First test 

First training dataset ("good" structures for grammar A = "bad' structures for grammar B): 
    3 x (((......)))                 7 x ((((....)))) 

Second training dataset ("good" structures for grammar B = "bad" structures for grammar A): 
    5 x ((...)(...))                 5 x ((..))((..))

Figure 5: Results of the training of grammars with the different models in the first test. p1-p3 are the probabilities in the

grammars as determined by the indicated models. 

a)

 

b)        
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c)

Figure 6: Results of the first test, for the independent (a), "minus" (b) and "times 1 minus" (c) models. "Afeq" and "Bfreq"

are the  fractional  frequencies of structures in our training data. "A prob rev"  and "B prob rev" are the probabilities

predicted for the same structures by grammar A and grammar B, respectively, normalized such that the probabilities for

the shown structures add up to 100% (so they are comparable to the frequency distribution).

  

Second   test  

First data set ("good" structures for grammar A, "bad" structures for grammar B) 
    2 x ((((........))))   2 x ((((.(...)..))))     6 x ((((((....)))))) 

Second data set ("good" structures for grammar B, "bad" structures for grammar A) 
    4 x ((..))(..)((..))   3 x (.(..)(..)(..).)     3 x ((..)..(..))(..) 

Figure 7: Results of the training of grammars with the different models in the second test. p1-p3 are the probabilities in

the grammars as determined by the indicated models. 

 

a) 
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b)

 

c)

Figure 8:  Results of the  second test, for the independent (a), "minus" (b) and "times 1 minus" (c) models. "Afeq" and

"Bfreq"  are  the  fractional  frequencies  of  structures  in  our  training  data.  "A  prob  rev"  and  "B  prob  rev"  are  the

probabilities predicted for the same structures by grammar A and grammar B, respectively,  normalized such that the

probabilities  for  the  shown  structures  add  up  to  100%  (so  they  are  comparable  to  the  frequency  distribution).

Figures 5 and 7 demonstrate that both the "minus" and the "times 1 minus" models are more effective in

separating the probabilities in the rules of the grammars than the independent model. In both tests (Figure 6

and  8),  we  can  observe  that  independent  training  did  not  result  minimizing  the  probabilities  of  "bad"

structures. For example, independent resulted in a large number of type A structures having relatively high

probabilities under grammar B. In contrast, both the "minus" and "times 1 minus" models minimized the

recognition of type A structures by grammar B.  

In  both tests,  when the grammars  are  trained together,  one "good" structure for  grammar B  is  actually

predicted by the trained grammar B to have a probability of nearly 0  (<0.1%), while the independent model

predicts a higher probability for the same structure. This is because the rule  F -> (F) is used more often to

parse the structures that are "bad" for grammar B than to parse those which are "good" for grammar B, and

hence this rule is given a very small probability when the grammars were trained with both datasets, but not

when they were trained with just the "good" dataset.  

Our data is insufficient to decide with certainty whether the "minus" or the "times 1 minus" model is better

for training the grammars together. We observed that the "times 1 minus" model appeared to map closer to

the frequencies than the "minus" model in the first test, but not in the second test, where the "minus" model

works slightly better for grammar A. However, we found that in the second test the "minus" model gave a

higher probability for grammar A predicting a "bad" structure than the "times 1 minus" model did.  
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One set of sequences and corresponding structures 

We now wish to train one grammar to recognize one set of structures given the sequences, ie. to maximize

P(s1,...,sn|x1...xn, G) for input sequences x1,...,xn with corresponding structures s1,...,sn. If given another set

of structures and sequences to recognize by another grammar, the probabilities for the second grammar can

be determined independently of the first  set of structures and sequences. Since the input structures and

sequences are independent, 

• prule are the probabilities of the rules in the grammar (probabilities for rules from same nonterminal

sum to 1, ie. 3 parameters in total) and frule are the numbers of times the corresponding rules were

observed in the data 

• px are the probabilities of single (unpaired) nucleotides (4x1 vector summing to 1, ie. 3 parameters),

and fx are the numbers of times they were observed in the data 

• pyz are the probabilities of dinucleotides (4x4 vector summing to 1, ie. 15 parameters), and fyz are the

numbers of times they were observed in the data. 

Two sets of sequences and corresponding structures 

The situation here is a mixture of "two sets of structures" and "one set of sequences and structures". Because

of a lack of time, we decided only to test the "times 1 minus" model. In the future, other functions could also

be tested.  

"Times 1 minus" function 

When training the grammars together, each grammar should have high probabilities for the "good" sequences

and their structures  and low probabilities  for  the "bad" sequences and their related structures.  For  each

grammar, we wish to maximize the following expression: 

where:  

• prule, px and pyz are defined as before 

• frule are the numbers of times the corresponding rules were observed in producing the structures of

the "good" sequences and grule are the number of times the corresponding rules were observed in 

producing the structures of the "bad" sequences 

• fx are the numbers of times the single nucleotides were observed in the "good" data and gx are the

number of times they were observed in the "bad" data

• fyz are  the numbers  of  times the dinucleotides  were observed in the "good" data and gyz are  the

number of times they were observed in the "bad" data.  
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Testing of models with sequences and structures as input 

To test the training of our grammars with sequence and structures as input, we used data from online RNA

databases. We obtained 6000 miRNA sequences from miRBase and 6000 eukaryotic tRNA sequences from

GtRNAdb and predicted their structures using the thermodynamic folding algorithm RNAfold. It is important to

note  that  RNAfold  does  not  necessarily  predict  the  "real-life"  structure  of  these  molecules,  but  for  the

purposes of training our grammars RNAfold predictions are suitable.

We first ran our program to find the frequencies for the rules, single and dinucleotides, in both cases, using

3000 miRNA sequences and 3000 tRNA sequences. We then used the NLP command in the Optimization

package of Maple to maximize the functions in both the "independent" and the "times 1 minus" models. The

parameters are defined only in the real domain and over the interval [0, 1).

 

a)

b)

c)

Figure 9: The probabilities obtained for the rules of the grammar (a), single nucleotides (b) and dinucleotides (c)

We observed that the independent and "times 1 minus" models led to very similar probabilities in the two

grammars  (Figure 9). We therefore expected the classification and structure prediction to produce similar

results in the two cases.  
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For testing, we used:  

• the "old" sequences, ie. the 3000 miRNAs and 3000 tRNAs that we already used in the training process

• "new" sequences, ie. the 3000 miRNAs and 3000 tRNAs that we didn't use in the training. 

Testing classification

In order to classify a sequence x, we chose the grammar that gave the highest P(x|G) and the type of x would

then be the type that the "winning" grammar was assigned to. The results of this testing are show in Figure 10.

 

Figure 10: Classification results. Each bar represents the fraction of times our program determined correctly or incorrectly

the nature of the type of RNA. The bars are normalized such that the sum of correct and incorrect predictions for each

type of RNA ("old mRNA", "new mRNA", "old tRNA", "new tRNA") is 100%. 

Figure 10 demonstrates that both the independently trained grammars and the grammars trained with the

"times 1  minus"  model  were able  to  differentiate  between tRNAs  and miRNAs:  this  is  true for  both the

sequences we trained them with ("old") and other, previously "unseen" sequences   ("new"). Since miRNAs

were recognized better by the "times 1 minus" model but tRNAs were recognized better by the independent

training model, we cannot say from this data which model is more appropriate to distinguish RNAs.  

As expected, the "old" structures were recognized better than the "new" structures in both cases, but the

difference is small. Both the independent and the "times 1 minus" models are more effective at recognizing

miRNAs correctly than tRNAs. We speculate that the reason for this may be that miRNA hairpins are generally

longer than tRNAs. 
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Testing structure prediction 

Since our structure prediction did not incorporate the use of evolutionary information, our grammars are not

expected to predict structures well. Nevertheless, we attempted to compare the structure predictions of our

grammars to that of RNAfold. It would be possible to use a metric for RNA secondary structures, and this way

the "distance" between our predictions and the RNAfold predictions could be computed, for all 3000x4 = 12

000 sequences. For lack of time, we were not able to implement this, but we did create visual depictions of a

few different structures using VARNA (http://varna.lri.fr/; see Appendix B for images).   

In general, it  appears that our trained grammars are quite efficient at predicting RNA structures even for

previously unseen sequences. In a few cases, the structures predicted by our trained program actually appear

more realistic than the predictions of RNAfold (based only on the single input sequence). It is interesting to

note that the "independent" and "times 1 minus" models   appear to predict the same best structure more

often than not; the only exception we have observed is for a miRNA sequence (miRNA-2). 

Final remarks 

In this work, we have tested various models to classify RNAs structurally using a SCFG. We have thus been able

to structurally classify tRNA and miRNA sequences with high accuracy after training two grammars specialized

to recognize only one of them. We believe this serves as a "proof of concept" that structural classification of

RNAs using SCFGs is possible and may be a useful approach in RNA secondary structure prediction. If we had

had the time, we would also have tested whether the grammars trained with only one type of RNA were more

able to predict structures than if they had been trained with a mixture of both types.

This introductory work could be improved and extended in many ways. We expect  that by  incorporating

evolutionary information (ie. alignments), our structure predictions would be improved significantly. Not less

importantly, our program is currently only able to distinguish two types of RNAs, and it "forces" any input RNA

into one of those types. It would be important to introduce a statistical measure for how "sure" we can be

that  a  particular  structure actually  falls  into  the  category  our  program allocates  it  to,  and define a  new

category of "unknown" RNA types. Our approach has a natural extension to an arbitrary number of RNA types

to recognize. 

Finally,  it  would be interesting to investigate  how grammars of other  forms perform in the classification

procedure.

References

Dowell & Eddy. Evaluation of several lightweight stochastic context-free grammars for RNA secondary

structure prediction BMC Bioinformatics, 5:71, 2004

Durbin et al. Biological sequence analysis. Probabilistic models of proteins and nucleic acids Cambridge

University Press, 1998

Knudsen & Hein. RNA secondary structure prediction using stochastic context-free grammars and

evoluionary history Bioinformatics vol. 15 no. 6, 1999

Knudsen & Hein. Pfold: RNA Secondary Structure Prediction Using Stochastic Context-Free Grammars NAR

31(13), 3423–342, 2003 

Sakakibara et al. Stochastic Context-Free Grammars for tRNA Modeling NAR 22(23), 5112-, 1994 

Schmitt & Waterman. Linear trees and RNA secondary structure Discrete Applied Mathematics 51 317-323,

1994

14



Waterman & Smith. RNA secondary structure: A complete mathematical analysis Mathematical Biosciences,

vol.41, pp.257–266, 1978

Online references: 

Final Project: RNA Structure Prediction Using SCFG - 2008

http://www.ece.tamu.edu/~bjyoon/ecen689-612-spring08/ecen689-612-final-project.pdf

Hein, J. RNA, Stochastic Context Free Grammars and Classifiers - 2009

http://www.stats.ox.ac.uk/__data/assets/pdf_file/0003/5268/rna_classifiers.pdf

Nkwanta, A. Predicting RNA Secondary Structures: A Lattice Walk Approach to Modeling Sequences Within

the HIV-1 RNA Structure - 2006

dimacs.rutgers.edu/Workshops/Diseases/slides/nkwanta.ppt

miRNA database - miRBase

http://www.mirbase.org/ftp.shtml

tRNA database - Genomic tRNA Database

http://gtrnadb.ucsc.edu/download.html

RNAfold code - Vienna RNA Package - RNA Secondary Structure Prediction and Comparison

http://www.tbi.univie.ac.at/~ivo/RNA/

VARNA - Visualization Applet for RNA

http://varna.lri.fr/

15



Appendix A: The program pseudo code  

Determine if a string can be generated by the grammar 

Let S be nonterminal 1, L nonterminal 2 and F nonterminal 3. 

Let the input be a string X consisting of n characters: x1 ... xn. 

Let P[n,n,3] be an array of booleans: P[i,j,k] = true if it is possible that, starting from the nonterminal no. k we

will obtain, after applying rules from the grammar, the substring xi....xi+j-1 that starts at position i and has j

characters/length. 

// initialize P with false 

for i=1 to n

    for j=1 to n-i+1 

        for k=1 to 3 

            P[i,j,k] = false; 

// S -> L and L -> . lead to: 

for i=1 to n { 

    P[i,1,2] = true; 

    P[i,1,1] = true; 

} 

for j=2 to n //length of the substring 

    for i=1 to n-j+1 {//start of the substring 

        if ( xi=="(" and xi+j-1==")" and P[i+1,j-2,3] ) 

            then P[i,j,1] = P[i,j,2] = P[i,j,3] = true; 

        for k=1 to j-1 { //partition of the substring 

            if ( P[i,k,2] and P[i+k,j-k,1] ) 

                then P[i,j,1] = P[i,j,3] = true;

    } 

if (P[1,n,1] == true) than X can be generated by the

grammar G. 

Determine the parse tree

Let the rules of the grammar have the following associted numbers: 

No. Rule Probability

1 S->LS p1

2 S -> L 1-p1

3 L -> (F) p2

4 L -> . 1-p2

5 F -> (F) p3

6 F -> LS 1-p3

Let parse_tree[n,n,3] be an array of strings: parse_tree[i,j,k] = the sequence of rules needed to generate

xi...xi+j-1 starting from nonterminal no. k if P[i,j,k] = true.

// initialize P with false and parse_tree with ""

for i=1 to n 

    for j=1 to n-i+1 

        for k=1 to 3 {

            P[i,j,k] = false; 

            parse_tree[i,j,k] = ""; 

        }

// S -> L and L -> . lead to:

for i=1 to n { 

    P[i,1,2] = true; 

    parse_tree[i,1,2] = "4"; 

    P[i,1,1] = true; 

    parse_tree[i,1,2] = "24"; 
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} 

for j=2 to n //length of the substring 

    for i=1 to n-j+1 {//start of the substring 

        if ( xi=="(" and xi+j-1==")" and P[i+1,j-2,3] )

            then { 

                P[i,j,2] = true; 

                parse_tree[i,j,2] = "3" + parse_tree[i+1,j-2,3]; 

                P[i,j,3] = true; 

                parse_tree[i,j,3] = "5" + parse_tree[i+1,j-2,3]; 

                P[i,j,1] = true; 

                parse_tree[i,j,1] = "23" + parse_tree[i+1,j-2,3]; 

            }

        for k=1 to j-1 { //partition of the substring 

            if ( P[i,k,2] and P[i+k,j-k,1] )

                then { 

                    P[i,j,1] = true; 

                    parse_tree[i,j,1] = "1" + parse_tree[i,k,2] + parse_tree[i+k,j-k,1];

                    P[i,j,3] = true; 

                    parse_tree[i,j,3] = "6" + parse_tree[i,k,2] + parse_tree[i+k,j-k,1]; 

                }

    }

if (P[1,n,1] == true) than parse_tree[1,n,1] is the parse_tree used to generate X. 

Determine the probability of a sequence 

Let ps and pd contain the probabilities for single and dinucleotides. 

Let P[n,n,3] be an array of doubles: P[i,j,k] = the probability of obtaining xi...xi+j-1 starting from nonterminal

no. k 

// initialize P with 0

for i=1 to n 

    for j=1 to n-i+1 

        for k=1 to 3

            P[i,j,k] = 0; 

// S -> L and L -> . lead to:

for i=1 to n { 

    P[i,1,2] += (1-p2)·ps[xi]; 

    P[i,1,1] += (1-p1)·(1-p2)·ps[xi]; 

} 

for j=2 to n //length of the substring 

    for i=1 to n-j+1 {//start of the substring { 

        P[i,j,2] += P[i+1,j-2,3] · p2 · pd[xi,xi+j-1]; 

        P[i,j,3] += P[i+1,j-2,3] · p3 · pd[xi,xi+j-1]; 

        P[i,j,1] += P[i+1,j-2,3] · (1-p1) · p2 · pd[xi,xi+j-1]; 

        for k=1 to j-1 { //partition of the substring 

            P[i,j,1] += P[i,k,2] · P[i+k,j-k,1] · p1; 

            P[i,j,3] += P[i,k,2] · P[i+k,j-k,1] · (1-p3); 

    } 

}

P[1,n,1] will contain the probability of sequence X.

Determine the structure with the highest probability for a sequence

The structure we are interested in is the one that maximizes 

 

Let parse_tree[n,n,3] be an array of strings: parse_tree[i,j,k] = the sequence of rules needed to generate the

structure with highest probability for xi...xi+j-1 starting from nonterminal no. k. 

Let P[n,n,3] be an array of doubles: P[i,j,k] = the probability of the structure generated by the parse_tree[i,j,k]. 
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// initialize P with 0 and parse_tree with ""

for i=1 to n 

    for j=1 to n-i+1 

        for k=1 to 3 {

            P[i,j,k] = 0; 

            parse_tree[i,j,k] = ""; 

        }

// S -> L and L -> . lead to:

for i=1 to n { 

    P[i,1,2] = (1-p2) · ps[xi]; 

    parse_tree[i,1,2] = "4";

    P[i,1,1] = (1-p1) · (1-p2) · ps[xi]; 

    parse_tree[i,1,1] = "24";

} 

for j=2 to n //length of the substring 

    for i=1 to n-j+1 {//start of the substring { 

        if ( P[i,j,2] > P[i+1,j-2,3] · p2 · pd[xi,xi+j-1])

            then {

                P[i,j,2] = P[i+1,j-2,3] · p2 · pd[xi,xi+j-1]; 

                parse_tree[i,j,2] = "3" + parse_tree[i+1,j-2,3]; 

            } 

        if ( P[i,j,3] > P[i+1,j-2,3] · p3 · pd[xi,xi+j-1] ) 

            then {

                P[i,j,3] = P[i+1,j-2,3] · p3 · pd[xi,xi+j-1]; 

                parse_tree[i,j,3] = "5" + parse_tree[i+1,j-2,3];

            } 

        if ( P[i,j,1] > P[i+1,j-2,3] · (1-p1) · p2 · pd[xi,xi+j-1] ) 

            then { 

                P[i,j,1] += P[i+1,j-2,3] · (1-p1) · p2 · pd[xi,xi+j-1]; 

                parse_tree[i,j,1] = "23" + parse_tree[i+1,j-2,3];

            } 

        for k=1 to j-1 { //partition of the substring 

            if ( P[i,j,1] > P[i,k,2] · P[i+k,j-k,1] · p1 ) 

                then { 

                    P[i,j,1] += P[i,k,2] · P[i+k,j-k,1] · p1; 

                    parse_tree[i,j,1] = "1" + parse_tree[i,k,2] + parse_tree[i+k,j-k,1];

                } 

            if ( P[i,j,3] > P[i,k,2] · P[i+k,j-k,1] · (1-p3) ) 

                then { 

                    P[i,j,3] += P[i,k,2] · P[i+k,j-k,1] · (1-p3); 

                    parse_tree[i,j,3] = "6" + parse_tree[i,k,2] + parse_tree[i+k,j-k,1];

                } 

        } 

    }

P[1,n,1] will contain the highest probability for sequence X and parse_tree[1,n,1] will contain the parse_tree

needed to generate the structure that gives P[1,n,1] probability.
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Appendix B: The RNAfold structures vs. predicted structures 

old miRNA 1
  >cel-let-7 MI0000001 Caenorhabditis elegans let-7 stem-loop 

miRNA 2
  >cel-mir-1 MI0000003 Caenorhabditis elegans miR-1 stem-loop 

miRNA 3
  >cel-mir-2 MI0000004 Caenorhabditis elegans miR-2 stem-loop 

new miRNA 4
  >hsa-mir-517a MI0003161 Homo sapiens miR-517a stem-loop 

miRNA 5
  >hsa-mir-521-2 MI0003163 Homo sapiens miR-521-2 stem-loop 

miRNA 6
  >hsa-mir-517b MI0003165 Homo sapiens miR-517b stem-loop 

old
tRNA 1 

  >Anopheles_gambiae_chr3R.trna51-AlaAGC (12752402-12752330)  Ala(AGC) 73 bp 

Sc:59.55 

tRNA 2 
  >Anopheles_gambiae_chr2R.trna116-ArgACG (11444246-11444174)  Arg(ACG) 73

bp  Sc:73.12 

tRNA 3 
  >Anopheles_gambiae_chr3R.trna17-ArgTCG (19628281-19628353)  Arg(TCG) 73 bp 

Sc:58.44 

new
tRNA 4   >Bos_taurus_chr22.trna155-GlyCCC (4638281-4638353)  Gly(CCC) 73 bp  Sc:35.66 

tRNA 5   >Bos_taurus_chr1.trna9631-GlyCCC (45528076-45528004)  Gly(CCC) 73 bp  Sc:35.67 

tRNA 6   >Bos_taurus_chr3.trna8812-GlyCCC (17236909-17236837)  Gly(CCC) 73 bp  Sc:35.68 

The pictures are found in the attached file. 
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