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Introduction 

 

With the advent of high throughput sequencing methods, more and more complete 

genomes tend to be available for public research. The platypus (Ornitorhynchus 

anatinus) was the last animal to have its complete genome sequenced and published
[1]

 

opening new doors to the study of this very strange mammal. 

In this work, we aim to build a comparative based profile Hidden Markov Model 

(pHMM) approach in detecting retrotransposable elements. The project will focus on 

elements of the LTR class, using available LTR loci from the Platypus itself and 

pHMMs built on known LTR loci from the closest relative available in the genome 

databases, the grey-tailed opossum (Monodelphis domestica). We will test the 

feasibility of using pHMMs to detect these genomic structures and hopefully contribute 

with novel sites. 
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Background 

 

Endogenous retroviruses are derived sequences from ancient infections of germline cells 

by exoretroviruses
[2]

. The provirus resulting from these infections are passed on 

vertically, becoming a permanent feature of the organism’s genome, and subject to 

mutations and evolutionary processes. Many are partially excised or suffer deleterious 

mutations that render their once coding genes inoperative. 

A typical retrovirus genome contains several key structural features
[3]

. Coding genes for 

viral proteins such as the gag, pol and env, and signal sequence such as the PBS – 

primer binding site or the PSI – packaging site. Another and a quite important structure 

is the LTR, or long terminal repeat. Retroviruses possess two LTRs, one in each 

extremity of their genomes. The LTR is the control center for the viral gene 

expression
[4]

 and has many similarities to a typical eukaryotic promoter, with 

transcriptional enhancers and some specialized regulatory elements
[5]

. All requisite 

signals for gene expression can be found in LTRs: enhancer, promoter, transcription 

initiation site, transcription terminator and polyadenlyation signal. The enhancer and 

other transcription regulatory signals are contained in the U3 region of the 5’ LTR, after 

which one can find the TATA box, just about 25 bp before the R sequence. When 

integrated, a proviral 5’ LTR acts as an RNA polymerase II promoter which conducts 

the transcription process that begins, by definition, at the beginning of the R sequence, 

proceeding through the U5 along the rest of the provirus. The addition of a poly A tract 

just after the R sequence in the 3’ LTR terminates this process. Interestingly, although 

both 5’ and 3’ LTRs have the same sequence arrangement, they perform different 

functions after insertion. 

Being such a common feature in retroviruses, LTRs are optimal targets for detection of 

integrated retroviral elements. Many recent complex detection pipelines include 

structural information based on the LTR features, in order to detect de novo LTRs in the 

genome. Some extended models also probe a confined space between two nearby, 

similar LTR hits for proviral gene remains in order to achieve a full endoretroviral 

characterization
[6]

. 

There are several tools available to detect LTRs, from which we cite a few examples. 

RepeatMasker
[7]

 annotation can be used to detect interspersed and low complexity LTR 

based on sequence identity. However, it might miss low copy LTRs and it might fail to 

detect new LTR as it is mainly based on homology. LTR-STRUC
[8]

 uses structural 

features of primer binding site, the polypurine tract and the dinucleotides ends of each 

LTR and LTR insertions sites to identify LTRs. RetroTector
[9]

 focuses on detecting 

endogenous viruses (ERVs) in genomic material in a repeat-independent way, but it 

might be weak in detecting single LTR. The initial purpose of our project is to detect 

LTR using landmarks and fingerprints based on previous homology information. 
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Algorithms for multiple sequence alignment such as Clustal
[10]

 are sensitive to the 

number and choice of sequences, and if many sequences with variable amounts of 

inserts exit, they can destroy the alignment. In case of ERV (endogenous retroviruses), 

which are very numerous and diverse, HMM seems better at extracting information 

from such sequences.  

Functional biological sequences typically come from families and conservative regions, 

and many of the sequence analysis are based on identifying the relationship of an 

individual sequence to a sequence family. Sequences in a family will have diverged 

from each other by duplication or translocation in the evolutionary history, it might be 

more difficult to analyses them by multiple alignment. Derived from Hidden Markov 

Models, profile Hidden Markov Models (pHMM) are widely used for searching 

databases for remotely homologous sequences.  

In general, pHMMs are statistical models of multiple sequence alignments
[11],[12]

. They 

capture position-specific information about how conserved each column of the 

alignment is and what residues are likely to be there. There are several forms of pHMM 

and we use HMMer
[13]

 to build our model of ERV and search for the target sequence. 

The basic form of a profile HMM is a linear set of Match (M) states, one per consensus 

column in the multiple alignments. Each M stated emits a single residue with a 

probability score that is determined by the multiple alignment or what we called 

“training sequences” in this project. Each match state carries a vector of 4 probabilities 

for scoring the 4 nucleotides. Each match state has an I and a D state associate with it, 

with insertion state also carrying 4 emission probabilities. We call a group of three 

states (M/D/I) at the same consensus position in the alignment a “node”. These states 

are interconnected with arrows called state transition so that there is either a match state 

or a deletion state in each node. Insertion occurs between nodes, and I states have a self-

transition (I to I), allowing one or more inserted residues between consensus columns. 

The model begins and ends with dummy non-emitting states, B and E. 

Parameters of the model are the transition probabilities and emitting probabilities. 

Generally, we just count up the number of times each transition or emitting is used in 

the training sequences to get an estimate of parameters. Sometimes, it is also necessary 

to add some pseudocounts to avoid zero probabilities and it means observed counts of 

emissions (residues) and transitions (insertions and deletions) in a multiple alignment 

are combined with Dirichlet priors to convert them to probabilities in an HMM. In order 

to calculate the probability of sequence given the model, recursive enumeration of 

possible sequences under certain rules is needed. The simplest model implies a 

geometric distribution over insertion length, though biologically it is not a realistic 

model, it is computationally easy to realize.  

To score a match to a hidden Markov Model, we can either use Viterbi equations to get 

the most probable alignment of a sequence x together with its probability P (π,x|M), or 

use forward algorithm to calculate the full probability of x summed over all possible 
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paths P (x|M). In HMMER, we use two scoring criteria: E-value and bit score. The bit 

score is defined as: 

S = log2  

It reflects the ratio of probability that query sequence is a significant match to the 

probability that the null model is a match. In practice, the score is rescaled to make 

calculation easier and result readable. 

The e-value is calculated from bit score and tells how many false positives we would 

have expected to see at or above this it. It measures the significance of the bit score, and 

unlike the bit score, its value is related the length of query sequence.  

Actually, HMMer bit scores are relative to two null hypotheses. The first is the null 

model built into the profile HMM in hmmbuild command. The second is calculated on 

the fly for each alignment. Sometimes, we might get negative score but good e-value, it 

means that though the bit score is bad, it is still better than expected by chance and 

therefore suggestive of distant homology. 
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Methods 

 

The available full-length platypus chromosomal sequences were obtained from UCSC 

Genome Browser
[14]

. Unassembled contigs were discarded. A summary of our database 

can be seen on table 1. Platypus and opossum LTR sequences were obtained from 

Repbase
[15]

. RepeatMasker annotated files for the platypus chromosomes were used as 

benchmarks to test our method’s performance and were also obtained from UCSC 

Genome Browser. Sequences, otherwise noted, were aligned using standard Clustalw 

algorithm and the profile HMMs were built from these alignments using the HMMer 

software package. Two pHMMs were built for each training set according to both a 

global and local alignment reasoning, allowing for multiple hits and calibrated with 

random generated sequences of mean and standard deviation close to the full length of 

each individual model. 

 

 

 

 

 

Analysed 

chromosomes 

Name Length 

(Mb) 

 

 

Partially 

analysed / 

discarded 

from final 

analysis 

Name Length 

(Mb) 

Chr 1 47.4 Chr 7 38.9 

Chr 2 53.3 Chr 10 10.9 

Chr 3 57.9 Chr 11 6.62 

Chr 4 57.3 Chr 12 15.4 

Chr 5 23.9 Chr 18 6.43 

Chr 6 15.8 Chr X1 44.2 

  Chr X2 5.49 

  Chr X3 5.78 

  Chr X5 27.0 
Table 1 – Summary of analyzed data. 
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Results 

 

The platypus pHMMs were built based on an alignment of seven available LTR 

sequences in RepBase, submitted by A. F. Smit and J. Jurka. Table 2 summarizes this 

training set. The alignment was trimmed to a smaller region of about 500 bp that 

encompassed the best aligned region. The platypus pHMMs for both local and global 

alignment were built and ran against each chromosome individually. Both pHMMs had 

the length of 430 states and were calibrated with 5000 random generated sequences of 

400 bp in length. Table 3 presents a comparison between local and global alignment 

approaches and a performance analysis on the method based on benchmarking with 

RepeatMasker annotation for the studied chromosomes. 

Sequence name Family Length (bp) 

PlatERVK1_LTR ERVK 389 

PlatERVK2_LTR ERVK 492 

PlatERVP1_LTR ERV1 382 

PlatERVR1_LTR ERV1 515 

PlatERVR2_LTR ERV1 473 

PlatLTR20B ERV3 713 

PlatLTR35C ERV3 1005 
Table 2 – summary of the training set used to build the platypus-based profile HMM. 

 

 Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 

RepMask 135 115 168 137 38 50 

Method hits true hits true hits true hits true hits true hits true 

Local 21 7 11 3 25 10 23 8 10 2 10 7 

Global 13 4 5 1 11 3 11 2 3 2 6 2 

Table 3 – Summary of hits for the playpus-based pHMM. Hits columns represent the total hits 
obtained by the method; True columns represent the hits that were validated by RepeatMasker 
annotation with a 100bp tolerance interval for start and end points. RepMask row indicates all LTR-
based annotated features. This includes ERV loci, solo LTRs, Gypsy elements, among others. 

 

Due to the large amount of training data for the opossum pHMMs, we decided to 

separate the sequences according to the fasta header information. From RepBase, most 

of the sequences contained family related information, which deemed them belonging to 

either ERV1, 2 or 3 family. Relying on this classification, we aimed to build four 

pHMMs – one for each family and a fourth one for non-classified LTR sequences. 

However, it was impossible to build an informative pHMM for these families, with the 

exception of ERV 3, since the sequence divergence within the same family was too high 

to ensure a valid model. Therefore, we decided to build several, smaller pHMMs, based 

on true genetic distance between all the opossum LTR sequences. The sequences were 

aligned using a fast clustalw algorithm and the Kimura distance
[16]

 matrix between all 
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sequences was obtained and exported using the ape package for the statistical software 

R
[17]

. 

In order to detect meaningful distances that would allow us to build sequence clusters, 

we trimmed down the distance matrix by removing all Kimura distances greater than 

0.8, and subsequently deleting all rows and columns which had less than 5 results below 

the cutoff. Strangely, the new distance matrix presented already formed sequence 

groups, arranged along the matrix diagonal. Figure 1 in Appendix A displays a colored 

overview of the detected sequence groups. 

Overall, seventeen groups were used to build the same number of pHMMs based on 

opossum LTRs, named op01 to op17 for local alignment pHMMs and op01g to op17g 

for global alignment pHMMs. A summary of these pHMMs and their characteristics can 

be seen in Table 4. 

HMM model Sequences in training 

set 

HMM Length 

(states) 

Calibration 

dataset length 

(bp) 

Op01 10 782 750 

Op02 7 1031 1000 

Op03 7 929 900 

Op04 9 778 750 

Op05 5 828 800 

Op06 7 797 800 

Op07 7 6904 5000 

Op08 8 276 250 

Op09 8 326 300 

Op10 9 656 650 

Op11 6 722 700 

Op12 7 574 550 

Op13 10 871 850 

Op14 8 1125 1000 

Op15 7 640 650 

Op16 7 846 850 

Op17 9 793 800 
Table 4 – Summary of the training set size and calibration parameters for the 17 pHMMs built based 
on opossum (Monodelphis domestica) data from RepBase. 

 

We then proceeded to run these pHMMs on several platypus chromosomes and assess 

the results. pHMMs op07 and op07g were build on a small cluster of whole ERV loci 

and turned out to take too much computing time in order to provide results within the 

allotted time, thus being discarded from the final analysis. 

Table 5 shows a summary of results for all the pHMMs built based on the opossum 

LTR data based on a local alignment criteria, while Table 6 provides the same overview 

for global alignment pHMMs. 
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 Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 

Model hits true hits true hits true hits true hits true hits true 

Op01 28 0 15 0 21 0 15 0 15 0 4 0 

Op02 3 0 8 0 7 0 4 0 2 0 0 0 

Op03 14 0 17 0 21 0 16 0 1 0 3 0 

Op04 13 0 7 0 12 0 6 0 1 0 0 0 

Op05 95 0 108 0 107 0 91 0 44 0 20 0 

Op06 5 0 4 0 9 0 12 0 2 0 1 0 

Op08 13 0 10 0 16 0 15 0 3 0 5 0 

Op09 12 0 12 0 16 0 15 0 1 0 3 0 

Op10 3 0 4 0 4 0 4 0 3 0 0 0 

Op11 5 0 9 0 10 0 14 0 7 0 4 0 

Op12 2 0 2 0 0 0 2 0 1 0 1 0 

Op13 32 0 29 0 37 0 41 1 15 0 10 0 

Op14 33 0 37 0 52 0 43 0 25 0 13 0 

Op15 75 0 75 0 83 0 93 0 41 0 18 0 

Op16 11 0 16 0 17 0 18 0 9 0 3 0 

Op17 26 0 20 0 27 0 33 0 16 0 10 0 

Table 5 – Summary of hits for the opossum-based pHMMs with a local alignment strategy. Hits 
columns represent all the hits obtained for the method while True columns represent those hits 
validated in RepeatMasker. 

 

 

 

 

 

 

 

 

 

 Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 

Model hits true hits true hits true hits true hits true hits true 

Op01 13 4 5 1 11 3 11 2 3 2 6 2 

Op02 3 0 1 0 1 0 1 0 1 0 1 0 

Op03 1 0 1 0 1 0 1 0 1 0 1 0 

Op04 1 0 1 0 1 0 1 0 1 0 1 0 

Op05 1 0 1 0 1 0 1 0 1 0 1 0 

Op06 5 0 6 0 5 0 3 0 3 0 1 0 

Op08 1 0 1 0 1 0 1 0 1 0 1 0 
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Op09 1 0 1 0 1 0 1 0 1 0 1 0 

Op10 1 0 1 0 0 0 1 0 1 0 1 0 

Op11 1 0 1 0 1 0 1 0 1 0 1 0 

Op12 1 0 1 0 1 0 1 0 1 0 1 0 

Op13 1 0 1 0 1 0 1 0 1 0 1 0 

Op14 1 0 1 0 1 0 1 0 1 0 1 0 

Op15 1 0 1 0 1 0 1 0 1 0 1 0 

Op16 6 0 10 0 5 0 14 0 5 0 1 0 

Op17 1 0 1 0 1 0 1 0 1 0 1 0 

Table 6 - Summary of hits for the opossum-based pHMMs with a global alignment strategy. Hits 
columns represent all the hits obtained for the method while True columns represent those hits 
validated in RepeatMasker. 
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Discussion 

 

RepeatMasker annotation in the Platypus genome for endoretroviral elements is, as of 

date, still quite poor. While we can benchmark our pHMM models built on available 

platypus LTRs on this annotation, the same is not valid for the comparative opossum 

pHMMs. Thus, we evaluate our meaningful hits based on phylogenetic relationships to 

the training data sequences. 

In order to trim down our results, we consider a meaningful hit those which e-value is 

below 10
-5

 and have a high positive bit-score, of at least 10-15. However, there are some 

particular cases, namely in the opossum pHMMs, where some of the hits, albeit having 

very low e-values (at most 10
-6

), also possess strongly negative bit scores. As stated in 

the HMMer manual, these hits may well be meaningful, as they can represent sequences 

somewhat phylogenetic distant, yet related, that were detected by a strict pHMM built 

on closely related sequences. The latter may well be the case of some of our opossum 

models, since all these pHMMs were built based on short genetic Kimura distances. 

Throughout the analysis of the results, we will keep an eye for these particular events 

and relax the bit score criteria for opossum-based models. 

The following discussion focuses only on the global alignment pHMMs, since the local 

alignment ones provide mostly short hits with very low bit scores and high e-values. 

Although the number of overall hits and RepeatMasker-confirmed hits is larger for the 

local alignment approach, this is mainly due to the small size of those hits, many of 

them contained within a single hit from the global alignment approach. The majority of 

these hits are CT and GA repeats, or sporadic LTR fragments. As a complement to the 

results shown here, Appendix B comprises the result files for the pHMM runs, which 

include genomic coordinates, bit scores and e-values for each hit. Appendix C 

comprises the Kimura distance matrices built with the Phylip package
[18]

 for each of the 

global pHMM training sets and respective hits. Phylogenies were built using the 

Phyml
[19]

 software package using the following parameters: HKY substitution model, 

with full parameter estimation and slow topology search (SPR moves). 
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A) Platypus pHMM 

 

Chromosome 1 - The global pHMM detected 13 hits, 4 of them verified by 

RepeatMasker – one belonging to the LTR35 family and three others to the ERVR1 

family. A phylogenetic analysis adds extra detail to this annotation, clustering most of 

the hits around the LTR35 node and one hit close to the LTR20 node. The amount of 

hits in the phylogenetic vicinity of LTR35 with high bootstrap values on the internal 

nodes, while keeping small branch lengths, indicates that there are more, non-redundant, 

copies of this family in the platypus genome than currently annotated. A total of 3 

results were excluded from the final phylogeny due to high e-values and/or low bit 

scores. Figure 1 below details the phylogenetic outcome of the platypus pHMM on 

chromosome 1. 

 

Figure 1 – Phylogenetic tree for the Chromosome 1 hits with the platypus-based pHMM (global 
alignment) 

 

Chromosome 2 – The phylogenetic tree of results from this chromosome has a poorer 

resolution. Hit_0202 was confirmed by RepeatMasker as a true hit from the ERV R2 

family. However, Hit_0204 strongly correlates with LTR35, indicating that this may be 

a missed annotated element in the chromosome. Hit_0201 appears to be either from or 

closely related to the LTR20 family, although the low bootstrap value of the internal 

node connecting these two leaves may cast some doubts as to the classification. A total 

of two hits from the original five were discarded from the final analysis due to poor bit 

scores and/or e-values. 
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Figure 2 - Phylogenetic tree for the Chromosome 2 hits with the platypus-based pHMM (global 
alignment) 

 

Chromosome 3 – Most of the phylogenetic relationships between hits and training data 

sets in this chromosome are fuzzy. RepeatMasker validated 3 out of our 11 hits, two of 

them belonging to the ERVR1 family while another belongs to the ERVR2 family. This 

is confirmed by the phylogenetic tree that shows Hit_0308 correlating with ERVR2 and 

Hits 0310 and 0304 correlating with ERVR1. LTR35 appears to have matches in our 

hits, namely Hit_0309 (bootstrap value of the internal node to ERV3 35C is 100). 

Hit_0301 and Hit_0307 are definitely related, but the unresolved node connecting them 

to the LTR35 leaf disallows a direct phylogenetic relationship to this family. Two 

results were excluded from the final analysis due to poor bit scores and/or e-values. 
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Figure 3 - Phylogenetic tree for the Chromosome 3 hits with the platypus-based pHMM (global 
alignment) 

 

Chromosome 4 – Two out of 11 hits are confirmed by RepeatMasker in this 

chromosome, both belonging to the ERVR1 family. However, the phylogeny only 

seems to validate one of these hits, Hit_0409, while Hit_0406, although being placed 

near the ERVR1 leaf, has a poor bootstrap value for the connecting internal node. Other 

meaningful matches not present in the RepeatMasker annotation are Hits 0407 and 0411 

that can be related to the LTR20 family; and Hits 0404 and 0410 that can be related to 

the LTR35 family. Two hits were discarded from the phylogenetic analysis due to low 

bit scores and/or high e-values. 
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Figure 4 - Phylogenetic tree for the Chromosome 4 hits with the platypus-based pHMM (global 
alignment) 

 

Chromosome 5 – Two out of three hits for this chromosome were validated in 

RepeatMasker, both belonging to the ERVR1 family. In our phylogeny, these hits 

correspond the Hit_0502 and Hit_0503. A good match was also found between LTR35 

and Hit_0501, which was not present in the RepeatMasker annotation. 

 

Figure 5 - Phylogenetic tree for the Chromosome 5 hits with the platypus-based pHMM (global 
alignment) 

 

Chromosome 6 – RepeatMasker annotation confirmed two out of six of our hits in the 

last of the analyzed chromosomes. One hit belonged to the ERVR1 family while the 

other was placed in the ERVR2 family. In our phylogeny, these hits correspond to 
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Hit_0605 and Hit_0601, respectively. However, we have three matches that weren’t 

present in RepeatMasker annotation, all of them clustering very well in the LTR20 

vicinity. One of our hits was discarded due to poor bit score value. 

 

Figure 6 - Phylogenetic tree for the Chromosome 1 hits with the platypus-based pHMM (global 
alignment) 

 

Summarizing, the pHMMs built on available platypus data managed to recover ERVR1 

and ERVR2 data with good accuracy. However, the model failed to detect any LTR 

belonging to the ERVK or ERVP families, which may indicate that a separate model for 

these families is necessary to improve sensitivity. LTR35 and LTR20 were quite often 

detected only after a phylogenetic analysis since the RepeatMasker annotation seldom 

attributed our hits to these families. The latter results show that a phylogenetic checking 

of our pHMM method can be a useful tool to validate results whenever RepeatMasker 

annotation is lacking or not available at all. 
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B) Opossum pHMMs 

 

In an attempt to detect novel endoretroviral LTRs, we ran several pHMMs built on 

opossum data, as described previously. RepeatMasker was unable to validate any of our 

results, with the exception of a single hit in the chromosome 3, using the model op13 in 

local alignment mode. This hit was catalogued as belonging to the LTR81 family, a 

family described as being very old and widespread among the mammalian species. 

Thus, phylogenetic relationships became our available tool for result validations. Since 

the scores for the local alignment mode were, in general, quite poor, we will only 

present, as before, discussion of the global alignment pHMMs, separated by model for 

convenience. Due to unresolved technical problems, we were unable to obtain a 

phylogeny for the op11 model results. 

Model op01 – After examining the phylogenetic relationships between the hits obtained 

using this model, we have considered all of them as being false positives due to the 

extreme distance between them and our training dataset. Although many of the hits 

cluster together, this may only indicate an internal relationship due to the fact that most 

of them have long regions of CT and/or GA tandem repeats. 

 

Figure 7 - Phylogenetic tree for the hits obtained with the opossum-based op01 model (global 
alignment) 

 

Model op02 – This model presents very similar results to the previous one, where all the 

hits cluster together and apart from the training data, the shortest Kimura distance 
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between a sequence from the training data and a hit being 1.691 (between Hit_201 and 

LTR68). Again, all the hits present long CT and/or GA tandem repeats which may be 

reason behind of their detected phylogenetic relationship. 

 

Figure 8 - Phylogenetic tree for the hits obtained with the opossum-based op02 model (global 
alignment) 

 

Model op03 – This model is a particular case where we have two hits, one in 

chromosome 1 (Hit_101) and another in chromosome 4 (Hit_401) that appear to be 

phylogenetically closer to the training set than in previous examples, but the use of an 

unrooted tree for analysis prevents us from taking further conclusions. Both these hits 

are cases where we have strongly negative bit scores and low e-values: these may be 

significant hits that are phylogenetically related to our training set, although falling 

outside of it due to the use of a strict model, a fact that is reinforced by the observation 

that none of the hits have a Kimura distance to a sequence from the training set greater 

than 2. 

 

Figure 9 - Phylogenetic tree for the hits obtained with the opossum-based op03 model (global 
alignment) 
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Model op04 – This model also provided significant hits (e-value lower than 10
-6

) with 

strongly negative bit scores. As the previous model, all these hits form a phylogenetic 

group that is distant from our training data set. Phylogenetic relationships within the hit 

space are apparent(Kimura distances < 1.5) but there is a clear separation between the 

hits and the training data set. For instance, the closer hit to the training data, Hit_501, 

possesses a large area covered by CT rich repeats. Interestingly, the first 400bp of this 

sequence are deprived of such repeats and strongly conserved along the mammal 

lineage. 

 

Figure 10 - Phylogenetic tree for the hits obtained with the opossum-based op04 model (global 
alignment) 

 

Model op05 – This model provided quite a number of strong hits, with high bit scores 

and very low e-values. Although none of them clustered within the training data set, 

there seems to be strong phylogenetic relationships within the space of hits. The fact 

that RepeatMasker did not present any of these hits in the LTR annotation lead us to 

closely examine them in the UCSC Genome Browser. There, we observed that the 

majority of the hits are catalogued as intervals comprising low complexity repeats of CT 

and GA, as well as some elements of LINE and SINE repeats. The phylogenetic tree 

below translates the relationships found with this model. Analyzing the distance matrix, 

we can conclude that while there are some strong phylogenetic relationships within the 

hit space (some pairs possess Kimura distances below 1.5), the distance from the hits to 

the closer sequence from the training set exceeds 3, and we can reason that the entire hit 

space may be a group of closely related false positives rich in tandem repeats. 
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Figure 11 - Phylogenetic tree for the hits obtained with the opossum-based op05 model (global 
alignment) 

 

Model op06 – This model provided only one significant hit below the e-value cutoff in 

all studied chromosomes and is, again, a hit with a strongly negative bit score. The 

phylogenetic relationship between the hit and the training data set is not apparent, 

however, and the Kimura distances from this sequence to the training data are too high 

(all greater than 2) to consider this hit as a true positive. Closer examination of the 

sequence reveals it to be heavily populated by short GA repeats. 
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Figure 12 - Phylogenetic tree for the hits obtained with the opossum-based op06 model (global 
alignment) 

Model op08 – Two hits from this model, Hit_101 and Hit_601, from chromosomes 1 

and 6, respectively, appear to be phylogenetically related between themselves, with a 

Kimura distance of 1.174. The closest hit to the training data set is Hit_201, with all 

Kimura distances to the training sequences under 1.2, despite the low resolution of its 

internal node. A closer inspection of this sequence in UCSC Genome Browser shows 

that it has a small AT rich but otherwise it is deprived of annotation. 

 

Figure 13 - Phylogenetic tree for the hits obtained with the opossum-based op08 model (global 
alignment) 

 

Model op09 – This model only provided one hit in chromosome 6. Although it 

resembles a false positive, analysis of the distance matrix indicates that the Kimura 

distance between Hit_601 and LTR62 is 1.249, only slightly higher than the maximum 

distance between two sequences of the training set, 0.945 between LTR62 and 

NERV2A1. This does not exclude the possibility of Hit_601 being related to the 
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training sequences. Interestingly, this region possesses regions of high conservation 

between platypus, human and mouse. 

 

Figure 14 - Phylogenetic tree for the hits obtained with the opossum-based op09 model (global 
alignment) 

 

Model op10 – The results from this model cluster together with good bootstrap values 

for the internal nodes, suggesting a phylogenetic relationship between them. Low e-

values and strong negative values for the bit score for all these hits may suggest a 

distant phylogenetic relationship to our training data that is, however, not that apparent 

in the phylogeny. The Kimura distance matrix confirms a close phylogenetic 

relationship between Hit_201 and Hit_401 and the LTR51 group as being the most 

similar to our hits, with an approximate genetic distance to Hit_201 of 2.396. 

 

Figure 15 - Phylogenetic tree for the hits obtained with the opossum-based op10 model (global 
alignment) 
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Model op12 – This model provided one hit in each chromosome, four of which cluster 

together with very high bootstrap values, indicating a possible phylogenetic 

relationship. However, we believe that the hits for this model are false positives, due to 

the poor resolution of the tree. Analysis of genetic distances does not improve the 

scenario, only providing support for the relationship between the top group of hits 

formed by Hit_601, Hit_501, Hit_201 and Hit_301. 

 

Figure 16 - Phylogenetic tree for the hits obtained with the opossum-based op12 model (global 
alignment) 

 

Model op13 – This model provided two hits, one for chromosome 5 and another for 

chromosome 6, that cluster strongly together, but fail to provide any phylogenetic 

information relating them to the training data. Again, these hits fall in the strongly 

negative, low e-value category. Kimura distances indicate that LTR83A2 is the closest 

training sequence to the hits, having distances of 1.763 and 1.906 to Hit_501 and 

Hit_601, respectively. 
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Figure 17 - Phylogenetic tree for the hits obtained with the opossum-based op13 model (global 
alignment) 

 

Model op15 – This model was quite proficient in providing significant results. We had 

around a total of 50 results for all 6 chromosomes, with good phylogenetic resolution 

between most of them. The relationship to the training data is unclear though, as the 

bootstrap values for the connecting nodes are of 96 between the major hit group and the 

training data – minor hit group, and of 53 between the minor hit group and the training 

data. Looking in detail at these sequences in the genome browser, we found out once 

again that most of them are catalogued as being a mix of SINEs, LINEs and CT/GA rich 

low complexity repeats, within a genomic interval of 640 bp. Analysis of the Kimura 

distances between hits and sequences from the dataset reveals that it is impossible to 

find a genetic distance between a hit and a sequence from the training set below 3.0, 

hindering the possibilities of a clear phylogenetic relationship. 
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Figure 18 - Phylogenetic tree for the hits obtained with the opossum-based op15 model (global 
alignment) 

 

Model op16 – This model presents probably the clearest phylogenetic relationship 

between hits and training data so far. Hit_601 falls close to the LTR31 group, and the 

remaining hits are not too distant from Hit_601. UCSC Genome Browser details this hit 

as having two SINE repeats followed by a GA tandem repeat within the 846 bp length 

of the sequence. Hit_601’s Kimura distances to the ERV9 group are all below 1.5, 

indicating a possible phylogenetic relationship to that group. Hit_401, however, is 

further distanced to both Hit_601 and the ERV9 group, with distances averaging 2.1. 
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Figure 19 - Phylogenetic tree for the hits obtained with the opossum-based op16 model (global 
alignment) 

 

Model op17 – This model also provides two hits that not only fall within the training 

data, but appear to be closely related to the LTR99 and LTR96 groups. Hit_301 and 

Hit_601 also cluster together with an internal bootstrap value of 100, indicating a strong 

phylogenetic relationship between them. The Hit_601 is shown in UCSC Genome 

browser as comprising two GA rich regions in the 3’ half of the 793 bp-long sequence, 

while Hit_301 presents a similar structure, adding two small repeats labeled 

MonoRep401 in the 5’ half. Kimura distances between Hit_301 and Hit_601 is 0.998, 

while the shortest distance to a sequence from the traning data, LTR6C is 1.756, which 

does not set aside a phylogenetic relationship between the two hits and sequences from 

the training data. 

 

Figure 20 - Phylogenetic tree for the hits obtained with the opossum-based op17 model (global 
alignment) 
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Summarizing, we get very few reliable hits with the opossum models. Some we can 

readily dismiss as being false positives by looking at the phylogenetic relationships 

between the hits and the training data, while roughly two thirds of the models present 

significant hits with strong negative bit scores, an artifact that can be derived from the 

tightly built pHMMs. Recalling, these pHMMs have on average 7 to 8 sequences on 

their training data, and all of them are closely related (Kimura distance < 0.8), which 

may lead to somewhat inflexible models. 
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Conclusions 

 

Overall, there was no clear benefit of using a local alignment strategy as opposed to a 

global alignment one. The majority of local alignment hits are either small tandem 

repeat sequences of less than 100bp or parts of hits that were recovered by the global 

alignment. The platypus-based pHMM was able to successfully recover a good number 

of true hits, mostly in the ERVR family. While, it failed to recover any hit from the 

ERVK or ERVP family, the LTR 20 and LTR 35 hits proved to be a valid addition to 

the current RepeatMasker annotation of the studied chromosomes. A separate pHMM 

built for those families that could not be retrieved, albeit with the risk of being too 

specific, could be worth a try. 

The comparative pHMMs based on the opossum data, however, proved to be much less 

efficient, at least when judging by the genetic distances to the sequences in the training 

set. A change in strategy when building these pHMMs may be in order, allowing for 

more flexibility by adding more sequences and relaxing their relatedness. Recalling, we 

used small closely related groups of no more than 10 sequences with a Kimura distance 

smaller than 0.8. 

In order to assess the specificity of our models, we ran the pHMMs against our own 

training sets and observed the values. The platypus-based pHMM has good scores for 

detecting all the training set sequences with the exception of ERVP1. Detailed results 

can be seen in Table 7. From here we can conclude that the model should work well for 

all sequences with the exception of ERVP1, due to a high degree of dissimilarity 

between this sequence and the rest of the training set. The bit scores aren’t exceptionally 

high, which should allow for a reasonable degree of flexibility. 

Sequence Score E-value 

ERVR1 176.0 7.2x10
-53 

ERVR2 158.8 1.1x10
-47 

LTR 20B 167.2 3.3x10
-50 

LTR 35C 147.4 2.9x10
-44 

ERVK1 79.8 6.8x10
-24 

ERVK2 116.8 4.9x10
-35 

ERVP1 3.1 1.3x10
-4 

Table 7 – Bit scores and e-values for the training set sequence. Higher scores and lower e-values 
improve the sensitivity of the model for a specific family. 

 

The same analysis was repeated for all opossum-based models. Careful examination of 

the bit-score and e-value results reveals that, all models except op02, op03 possess very 

high bit scores for the majority of the sequences and very low (< 10
-80

) e-values. Since 

the value of the average bit score is directly proportional to the strictness of the model, 

this reflects our previous assumption that the opossum-based models are indeed not 
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very flexible and the building strategy should be changed to allow for a more broad 

range of training sequences. The full testing tables can be seen in Appendix D. 

Most of the unknown hits appear to be heavily rich in short tandem repeats. This was a 

recurring problem when using pHMMs, and while the training set sequences are not 

especially enriched in these elements, they proved to be a major factor to take into 

account when analyzing the results and picking out false positives. The small number of 

hits in the global alignment strategy allowed us to use manual characterization of most 

of the hits – a process that, however tedious, proved to be quite interesting and 

sometimes essential to discriminate results. While doing so, we discovered that the LTR 

20 elements of platypus occur in pairs almost exclusively, with a small 10-30bp space 

of non-LTR sequence between both copies. 

Unlike what is done for protein sequences, HMMER does not use mixture Dirichlet 

priors for nucleotides. Instead, it uses plus-one (Laplace) priors for match and insert 

emission priors, which provide only rudimentary prior knowledge in pseudocount and 

for this reason, we need a lot of data in the alignment to get good estimate of the 

parameters
[20]

. While in fact we only have a small training set --less than 10 sequences 

for each group, and it might be a cause for poor detection levels. 

  Changing the entry probabilities and exit probabilities manually (which is set by default 

in HMM, independent of the training data), the number of hits we get varies a lot. While 

in fact it is difficult to set these parameters empirically, it might not be a bad idea to try 

HMM in a sliding window on the query sequence. On the other hand, most of our false 

positive hits are successive GA, CT repeats, and we can easily eliminate them using the 

sliding window. 

We also planned on building a third set of pHMMs based on very old, mammalian-wide 

conserved LTR families. The fact that the only recognized hit on the local alignment 

opossum-based pHMMs belongs to one of these families (LTR81), indicates that they 

may be quite useful in detecting LTR elements in the platypus genome. 
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