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Abstract

RNA splicing is an essential and precisely regulated post-transcriptional
process that occurs prior to mRNA translation. In eukaryotes, alterna-
tive splicing occurs frequently to increase the biodiversity of proteins.
With the development of high throughput sequencing method, there
are more and more annotated genomes for bioinfomatics research. The
Human-transcriptome DataBase for Alternative Splicing (H-DBAS) is
a specialized database of alternatively spliced human transcripts.

In this work, we aim to use a maximum entropy model (MEM) to
find alternative splicing related motifs in the upstream of a skipped
exon, which is not conservative in all the transcripts. We test our

model in prediction of skipped exons in human genome.
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BACKGROUND

Alternative splicing (AS) is a widespread mechanism for generating protein
diversity and regulate protein expression in eukaryotes. Human genome pro-
duces around 150,000 different proteins from around 30,000 genes. An esti-
mated 95% of transcripts from multiexon genes undergo alternative splicing,
with a number of pre-mRNA transcripts spliced in a tissue-specific manner|[1].
Abnormal variations in splicing may cause severe genetic disorders[2].

The process of splicing is regulated by trans-acting proteins (repressors
and activators) and corresponding cis-acting regulatory sites silencers and
enhancers) in the pre-mRNA[3]. These elements and factors governs how
splicing will occur under different. In general, the determinants of splicing

work in an inter-dependent manner that depends on context|4].
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Figure 1: Splicing activator proteins bind to splicing enhancers in exons (ESE)
and introns (ISE). They assist in the binding of Ul sntRNP to the donor site and of
U2AFs and U2 snRNP to the acceptor site and branch point.Alternative splicing
occurs|5]

Motifs regarding splice enhancing and silencing exist within and without
exons. Motif sequences which enhance splicing in exon are called ESE (Ex-
onic splicing enhancer) and those which silence splicing in exon are called ESS
(Exonic splicing silencer). Motif sequences which enhance splicing in intron

are called ISE (intronic splicing enhancer) and those which silence splicing in



intron are called ISS (intronic splicing silencer). By the trans-acting splicing
factors bound specificity with these motifs operate to snRNPs, alternative
splicing occurs (Figure 1).

There are different patterns for alternative splicing (Figure 2). Cas-

sette exon or skipping exon is the most commom mode in mammalian pre-

mRNAs|6].
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Figure 2: Types of alternative splicing. Boxes represent exons and lines represent
introns. Colored exon regions are included in mature mRNA and gray regions
are spliced out. Arrows indicate promoters and multiple A is the polyadenylation
site[7]

When we look into the different transcripts of one gene, some exons may
be kept in every transcripts while others may show up only in some of the
transcripts. In this work, we mainly focus on the cassette skipped exons and

strictly conservative exons. We are interested in the signals before conser-
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vative exons and skipped exons. In order to find the signal motif, we use
maximum entropy method to estimate the distribution of nucleotides in the

upstream region of exons. We then evaluate our model with test set.



METHODS AND DATA

Maximum entropy model

Information theory provides a constructive criterion for setting up probabil-
ity distributions on the basis of partial knowledge. The maximum entropy
estimate is the least biased estimate possible on the given information, that
is, the maximally noncommittal with regard to missing information[8].

The concept of maximum entropy can be traced back to an early age.
However, only when computational methods are powerful enough, it can be
widely applied to real world problems. A classical application of maximum
entropy model is the pattern recognition in natural language processing. Re-
cently, maximum entropy models are also used in bioinfomatic field, detecting
signal patterns in genome sequence|9].

Let X be a sequence of A random variables X = {X;, X5, ...X,}, where
X; € {A,C,T,G}. Let © = {1, x9,...tx} be a specific DNA sequence. Let
p(X) be the joint probability distribution p(X; = z1, Xo = z9,..X\ = x))
and P(X = x) be the probability of a state in this distribution.

According to the principle of maximum entropy, among all the possible
distributions in the hypothesis space that satisfy all the prior constraints,
the distribution which is the best approximation of the true distribution is

the one with the largest Shannon entropy,

H(p) = — > p(x)loga(p(z)) (1)

where the sum is taken over all possible sequence, x. As there are four nu-
cleotides, we use logarithms to base 2, so entropy can be measured in bits.
Shannon entropy describes the "uniformity” of a random variable X. Intu-
itively, the principle is simple: model all that is known and assume nothing

about that is unknown. In other words, given a collection of constraints i.e,



type test set training set gene
skip 20427 20408 2636
conservative 26363 26429 8852

Table 1: Numbers of sequences in training set and test set and numbers of
genes different exons located on

facts, choose a model consistent with all the constraints, but otherwise as
uniform as possible.

After defining the concept of best model, we use an iterative scaling
method to approach the maximum entropy model in our work. In each
step, we apply a constraint in the distribution we get from last step, that is,
putting information into the model. The result of adding information is the

decrease in Shannon entropy.

Transcript data

To study the signal patterns, we observe the behavior of motifs in the up-
stream of skipped exons comparing with conservative exons. We download
the transcript data RASV_human_fledna which contains 95,160 transcripts
in 27,193 locus from H-DBAS[10]. We then map the transcript sequence
to UCSC Homo_sapiens.GRCh37.73.dna.chromosome to identify conserva-
tive exons and skipped exons (Figure 3). We classify the exons using a
straightforward method. If an exon appears in all the transcripts and the
coordinates are strictly the same, it is considered as a conservative exon. In
other word, we ruled out the possibility of intron retention and alternative
5" or 37 splice site. If an exon with explicit boundaries only appears in some
of the trancripts, it is considered as skipped, or cassette exon.

We divide the exons into training set and test set (Table 1) . We choose
sequences at position (-6 to 0) of the upstream of exons. A pattern of AG

consensus follows this region indicating the beginning of splicing.



Figure 3: The gene has four observed transcripts. We choose type 2 exon as
skipped exons and type 3 as conservative exons. Most part of type 4 exon con-
served, but in transcript 3 there exists a retention 5’ sites, so we don’t consider
this type as neither skipped nor conserved.

Constraints

In our work, we consider constraints carrying information of both position
dependency and nucleotide frequency.

Let Sx be the set of all marginal distribution of the full distribution,
p(X = {X1, Xs,..X\}). A marginal distribution is a joint distribution over

a proper subset of X. For example, for A = 3,

Sx = {p(X1),p(X2), p(X3), p(X1, X2), p(Xa, X3), p(X1, X3)} (2)

Let ST" C Sx,m refers to the marginal order and s refers to skips in posi-
tion.We divide all the constraints into there categories according to different

patterns of motifs.

a. The first order constraints, S} = {p(X1), p(Xs),...p(X3\}, are the em-
pirical frequencies of each nucleotide at each position. If only the first order
constraints are applied in modeling, the distribution is the weight matrix

model.In 2, the first three subsets are this kind of constraints.
b. The second order constraints, S7", the subscripts indicates the length of
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skip in positions, the superscript m indicates the maximum length of skip in
positions. In 2, p(X;, Xs), p(Xs, X3) are the constraints with 0 skip (s = 0),
and p(Xi, X3) is the constraints with 1 skip (s = 1). When we take m into

consideration, ST is a union of several subsets. For example, for A = 3,

So = {p(X1),p(Xs), p(X3)}
Ss = {557P(X17X2)>p<X27X3)}
St = {5, p(X1, Xa3)}

c¢. The higher order constraints focus on non-skip motifs. If a pattern
is consisted of more than two nucleotides, we only consider the situation

without skip, i.e, s = 0. For example, for A = 4,
Sy = {p(X1, X2, X3), p(X2, X3, X4)}

For all the constraints mentioned above, the observed frequency values for
a particular member of constraints are added. For example, p(X;) contains
4 elements responding to {pi(A),p1(G),p1(C),p1(T)}, where p1(A) is the

observed frequency of A in position 1.

Iterating scaling method

We use an iterating scaling method to approach the maximum entropy model.
In each step of iteration, adding constraints into the model, the approxima-
tion to the maximum entropy estimate improves, using 1 as a measure of
closeness of the approximating distribution to the true distribution.It may
happen when inconsistent constraints are applied in the process of itera-
tion. However, the set of all the constraints is the subset of the empirical

distribution and therefore be consistent. The convergence of Shannon en-



tropy and the uniqueness of maximum entropy distribution can be rigorously
proved[11].

We begin with a uniform distribution with P°(X) = 4=*. Next, we add
constraints (); to the distribution and update the distribution using,

pi_ pi-t @?2@5—1 - Y PriX =g (3)

z€Sx—Q;

where P/~ PJ is the distribution at j —1 and j step of iteration, Q; is the ith
nucleotide relating constraint in a particular position constraint, and Qi !
is the value of distribution corresponding to the ith constraint determined
from p at the 7 — 1 step. In other word, each step is a rearrangement of
probabilities for all the 4=* possibilities responding to a new constraint.

The rate of convergence depend on how good the constraints are. There-
for we can control the rate of convergence by changing the order in which
the constraints are applied[9]. As there are too many constraints, we apply
a greedy strategy in choosing constraints in each step. We calculate the re-
duction in H relative to the distribution determined by previous step and
choose the constraint with the largest AH for this step. The iteration stops
when AH is small enough| AH| < 1071,

The rank of constraints depend on the constraints ranked before. For

example, if we consider the constraint set of
{p(Xl = A)>p(X2 = G)ap(Xl = AaXQ = G)}

suppose the pattern of AG is the true determining factor, i.e, with biological
significance. In the case where constraints are chosen randomly, if we applied
the first two constraints, the nucleotide bias in separated positions, before
the third one, the significance of AG pattern may be obscured by the former
ones. While in the ranked case, the constraint of AG pattern is the first



choice. After AG, the constraints are reordered. The ranking of A* (the first
position is A) and *G (the second position is G) decline after updating.

Prediction and test

We applied the iteration over the upstream sequences of skipped exons and
conservative exons, and get the two distribution p**?(X),p"*(X). Given
a new sequence in test set, the maximum entropy model can be used to
distinguish skipped exons from conservative exons based on the likelihood

ratio, L, ‘
B PP (X = )

L(X:x)—m

(4)

where P*P(X = z) and P®"(X = z) are the probability of occurrence
of sequence z from the distributions of skipped exon(skip) and conservative

exon(cons).

10



RESULTS AND DISCUSSION

The greedy strategy works quite well(Figure 4). With the constraints ranked,
information content (12 — H) increases with a higher rate than that with

random constraints. The top 20 constraints with highest AH are listed in

Table2.
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Figure 4: Add Sj constraints in ranked and random strategy. With ranked con-
straints, the information content converges quickly while with random constraints,

the information content converges very slowly.

The maximum entropy models for skipped exons and conservative exons
are quite deifferent (Figure 5), which inspires us to test the models in real

data. However, the result is not as good as we have expected(Figure 6).
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conservative exon  skipped exon
pattern AH pattern AH

ok A K 1.6081 KTHAKE 1.7234
THHHG* 0.9421 RAG* 11,1829
*TACC 0.5868 CTTACC 0.9067
*CAG* 0.4190 FEACC  0.7882
BECC 0.3618 GHFEEE(0.5323
*GA** 0.3294 TTCAGG 0.2413
*AHAHH 0.2890 TH**G*  0.4333
THA** 0.2813 C****C  0.4169
GHHAT* 0.1607 BEEGC  0.2129
Cretotok 0.1567 T 0.1382
ACAGA 0.1333 KTA®RE0.1056
AGTACC  0.1207 FECA™*  0.0562
CTCACC  0.1101 TH*A**  0.0337
TTCAGG  0.0885 C** A**  0.0392
*AGG 0.0732 TTCAGA 0.0284
AR C* 0.0704 ETA®E0.0527
THHHC* 0.0546 TTTAGG 0.0216
*CH*T 0.0590 THT* 0.0466
TTTAGT 0.0472 *TTAGG 0.0262
TH*C* 0.0485 Creeiek—(0.0342

Table 2: The top 20 informative patterns in skipped and conservative exons.
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Figure 5: The distribute of skipped model and conservative model. The two models
are very different.

The value of likelihood L(X = z) which indicates the occurrence of skip-
ping isn’t significantly large in skipped exon sequences or significantly small
in conservative ones. We discussed over the results and made some assump-
tions. One possible reason may be that, the mechanism of alternative splicing
is so complicated that the 6 base-pair upstream sequence only provide very
little information. The convergence of information content is not because of
our model approaching the real distribution, but of using up all the infor-
mation the constraints carries. The iteration stops at a local optimal points
rather than a global one. This can be inferred from the estimation. Even
though AH is very small, the convergent curve is very nice, there are still
many components of the estimated distribution with same value. The infor-
mation is not enough to distinguish between the components so they stay
uniform with each other.

Another possible reason lies in the strategy we choose exons. The skipped

exons can be spliced into transcripts sometimes. The signal sequence, if there
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Figure 6: The likelihood corresponding to different models of the first 1000 se-
quences in test data.The differences are not significant enough to tell skipped exons
from conservative ones.
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is any, should contain both splicing and alternative splicing signals. The
splice signal may be so strong that it covers the alternative splicing signals. In
Burge’s work, the short sequences matching the patterns of ***GT**** and
oslosiioosiiiorok AGN**instead of real conservative site sequences, are
used as decoy 5’ and 3’ site background. This strategy relies on the empirical
knowledge of splicing mechanism, which is not easy for the alternative splicing
situation.

Back to the biological data, it’s not easy to pre-assume which pattern of
motif determines or influence the process of alternative splicing and where
the motif with significance locates in the genome. The important motif may
be far away from the splicing cite and the secondary structure of sequence
should be taken into consideration. Next, we may update the model in many
aspects, for example, extracting a slightly longer sequence in both upstream
and downstream, constructing the background data using Burge’s strategy

and adding high order constraints with skips in positions.
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