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1. Introduction

Revealing intra-molecular  coevolution between amino acid residues has 
been  one  of  the  most  important  goals  of  molecular  biologists, 
bioinformaticians and of new emerging areas of research. Many methods 
have been devised to understand the evolutionary dynamics of  proteins 
through  the  examination  of  multiple  sequence  alignments  (MSA's). 
Although this approach has dramatically improved our understanding of 
the mutational dynamics of proteins, the complexity of proteins' mutability 
is beyond methods focusing on the analysis of linear sequences. The last 
decade  has  witnessed  the  emergence  of  a  plethora  of  mathematical 
methods and computational tools aimed at drawing the spatial, functional 
and evolutionary dependencies between amino acid sites within a protein. 
The coevolutionary relationships between amino acid sites  are however 
swamped in a background of different interacting factors governing the 
evolutionary dependencies of amino acids. During the last few years many 
efforts have been devoted to uncover evolutionary relationships between 
amino  acid  sites  belonging  to  the  same  or  to  different  proteins.  The 
importance such studies has been underpinned by many examples where 
dependencies  between  amino  acid  sites  have  unearthed  the  functional 
importance of residues (Fares and Travers 2006; Travers and Fares 2007). 

The intrinsic complexity of the evolutionary dependencies between amino 
acid sites has however hampered the development of sensitive methods to 
detect functional coevolution. In fact, coevolution between two amino acid 
sites  can  be  decomposed  into  stochastic  coevolution,  functional 
coevolution and interaction coevolution. Each of these factors has different 
weights depending on, among other factors, how realistic models are to 
detect  coevolution and quality  of the multiple  sequence alignment.  The 
sensitivity of most of parametric and non-parametric methods to detect the 
functional  coevolution  has  been  always  compromised  by  the  ability  of 
these methods to disentangle the different types of coevolution.

Algorithms for detecting coevolving positions can be classified into two 
categories:  the  tree-aware  method,  which  incorporates  knowledge  of 
phylogeny, and tree-ignorant, which does not. Tree ignorant methods are 
frequently  orders  of  magnitude  faster,  but  are  widely  held  to  be 
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insufficiently accurate because of a confounding of shared ancestry with 
coevolution.

In our studies, we have developed a model for detecting coevolution based 
on multiple sequence alignment of interacting protein domains and then 
we have compared results using the tree-aware and tree-ignorant methods. 
So  far  we  have  considered  interacting  protein  datasets  such  as  2-
oxoisovalerate dehydrogenase subunits, elongation factors Ts and Tu, and 
copper  transporting  P-type  ATPases  with  copper  chaperones.  Our  tree-
ignorant model is  based on a single parameter, while in the tree-aware 
method we consider a constant molecular clock and use distances between 
any two tree leaves as second parameter of the model.

2. Coevolutionary model

An overview of our model is provided by Figure 1, taken from Yeang & 
Haussler (2007). 
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We  extend  the  continuous-time  Markov  process  (CTMP)  sequence 
substitution to model coevolution of amino acid position pairs. The state 
transitions of a CTMP at an infinitesimal time interval  follow a matrix 
differential equation (Equation 1). The instantaneous transition rates are 
specified by a 24 × 24 substitution rate matrix  Q. A CTMP of an amino 
acid pair is obtained by concatenating the sequence states of two amino 
acid positions. The substitution rate matrix of two independent amino acid 
positions can be directly derived from the CTMP of single sites. However, 
the  rate  matrix  of  a  general  two-component  CTMP has  much  fewer 
constraints  and  a  larger  dimension  (576  ×  576).  We  simplify  the 
substitution rate matrix by penalizing all the entries of single changes and 
rewarding all the entries of double changes with the same weight factors.

The sequence substitution of a single amino acid is modeled by a 
CTMP.  Denote  by  x(t)  the  sequence  composition.  P(x(t))  is  1x24 
probability vector of x(t) and follows a Markov process at an infinitesimal 
time interval:

 

where Q is a 24 × 24 substitution rate matrix. Each row of Q must sum to 0 
in order to make components of P(x(t)) sum to 1. In this work we used the 
Dayhoff  matrix  of  amino  acid  substitution.  The  transition  probability 
P(x(t)|x(0)) at a finite time interval t is given by the matrix exponential eQt, 
which is the solution of Equation 1:

 

Define  x(t)  =  (x1(t),x2(t))  as  the  joint  state  of  two  amino  acids.  The 
sequence  substitution  follows  the  same  equation  for  the  single-site 
evolution  (Equation  1),  but  the  dimensions  of  the  probability  vector 
(1x576) and the rate matrix (576x576) are much larger. If two sites are 
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independently evolved, then the joint rate matrix Qi
2 can be derived from 

the rate matrix of single sites:

Qi
2 [(a1,  a2),  (b1,  b2)]  specifies  the  sequence  substitution  rate  of   the 

independent model from state (a1,a2) to state (b1,b2).  In Qi
2, the rate of a 

single amino acid change is equal to the corresponding rate in the single 
site rate matrix Q, and the rates of double amino acid changes are all zero. 
For  example,  Qi

2
 [HR,  HA]  = Q[R,  A]  and  Qi

2
 [HR,  GX]  =0.  This  is 

intuitive since off-diagonal entries of Q i
2
 specify the transition probabilities 

at an infinitesimal time interval. At an infinitesimal time interval, at most 
one transition occurs for two independent CTMPs.
Each diagonal  entry of  Qi

2
 is  again -1 and multiplies the sum of other 

entries  in  the  same  row.  A true  coevolutionary  model  should  reward 
transitions into the sequence states of selective advantages and penalize the  
transitions of opposite directions. Due to the difficulty of finding this true 
model, we constructed a simplified model by reweighing the entries of the
independent rate matrix to penalize single transitions and to reward double 
transitions:
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Single amino acid transitions are penalized by being multiplied by a fixed 
number ε, where  ε < 1. Double amino acid transitions from the same state 
(α1,  α2) are rewarded by replacing zeroes with an identical quantity

Its values cause diagonal entries in Qc
2 to be identical to Qi

2. Qc
2 will then 

favor the sequences that have strong covariation between distinct states. 

3. Multiple sequence alignments

Sequences have to be aligned amongst themselves before being checked 
for coevolution.

Multiple  alignments  of  protein  sequences  are  important  in  many 
applications,  including phylogenetic  tree  estimation,  secondary structure 
prediction  and  critical  residue  identification.  Many  multiple  sequence 
alignment (MSA) algorithms have been proposed. Two attributes of MSA 
programs are of primary importance to the user: biological accuracy and 
computational complexity. Complexity is of increasing relevance due to 
the  rapid  growth  of  sequence  databases,  which  now  contain  enough 
representatives of larger protein families to exceed the capacity of most 
current  programs.  Obtaining  biologically  accurate  alignments  is  also  a 
challenge,  as the best  methods sometimes fail  to align readily apparent 
conserved motifs. 

For  aligning  our  sequences  prior  to  coevolution  analysis,  we  used  the 
multiple alignment software MUSCLE, a MSA program that is considered 
to provide improvements in accuracy and speed over the more traditional 
ClustalW (Edgar. R.C. 2004).

The workflow MUSCLE uses is the following:
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Clarifications:

– A kmer is a contiguous subsequence of length k, also known as a 
word or k-tuple. Related sequences tend to have more kmers in 
common than expected by chance.

– Distance matrices are clustered using UPGMA (Unweighted Pair 
Group Method with Arithmetic Mean)

4. Inferring phylogeny 

We created tree using ClustalX based on the Neighbour-Joining method. It 
is a bottom-up clustering method used for the construction of phylogenetic 
tree. Neighbor-joining is an iterative algorithm. Each iteration consists of 
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the following steps:

• Based on the distance matrix calculate the matrix Q (defined below).
• Find the pair of taxa in Q with the lowest value. Create a node on the 

tree that joins these two taxa (i.e., join the closest neighbors, as the 
algorithm name implies). 

• Calculate the distance of each of the taxa in the pair to this new node. 
Calculate the distance of all taxa outside of this pair to the new node.

•  Start the algorithm again, considering the pair of joined neighbors as 
a single taxon and using the distances calculated in the previous step.
Based on a distance matrix relating the r taxa, calculate Q as follows:

where d(i,j) is the distance between taxa i and j

We used calculated distances between each pair of sequences in the tree 
obtained. Correlated substitution score Qc for each pair was multiplied by 
it corresponding distance for a pair of sequence. 

where Q
t
c is the correlated score based on the tree-aware method and 

where  l is the distance between two leaves of tree. 

5. Examined interacting pairs

Three interacting protein pairs were examined thoroughly during this 
project. A description of each pair follows.
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5.1 Copper pump – copper chaperone

Copper transporting P-type ATPases,  more commonly known as copper 
pumps, are a family of transporters that use a E1-E2 Post-Albers cycle to 
transport  copper  ions  across  membranes  either  into  organelles  or  into 
extracellular  space.  Here,  E1  and  E2  refer  to  the  two  different 
conformations acquired by the pumps during their functional cycle.

Copper  pumps  are  essential  to  both  eukaryotes  and  prokaryotes  for 
ensuring correct copper homeostasis. Copper is an essential metal in many 
enzymes, perhaps the best known of which is Cu-Zn superoxide dismutase, 
a protein which destroys highly dangerous superoxide radicals. However, 
copper can be extremely toxic to cells when in excess, not least due to the 
possibility of hydroxyl radical generation by the Fenton reaction and the 
potential of copper to bind ectopically to proteins. Therefore, any increase 
in intracellular copper concentration can be potentially lethal and must be 
countered by an increased efflux of this ion out if the cytoplasm.

As copper is so toxic, almost no free copper ions are available in cells. 
Most of the copper is buffered by proteins such as metallothioneins and 
low molecular  weight  compounds such as glutathione.  This  also means 
that  copper  cannot  be  delivered  to  the  pumps  in  free  form.  Therefore, 
copper is delivered to the pump by heavy-metal binding proteins known as 
copper  chaperones.  These  are  relatively  small  and  usually  include  a 
conserved CxxC motif for metal binding.

No structure of any copper pumps are as of yet available, although a few 
chaperone structures have been solved.  

5.2 Elongation factors Ts-Tu

Elongation is the stage of protein synthesis during which amino acids are 
being added to the growing polypeptide chain.

Elongation requires participation of elongation factors EF-Tu (also called 
EF1A), EF-Ts (EF1B) and EF-G (EF2). Two of these, EF-Tu and EF-G, 
are small GTP-binding proteins. The sequence of events is as follows:  EF-
Tu-GTP binds  and  delivers  an  aminoacyl-tRNA to  the  A site  on  the 
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ribosome.  EF-Tu  recognizes  and  binds  all  aminoacyl-tRNAs  with 
approximately the same affinity, when each tRNA is bonded to the correct 
(cognate)  amino  acid.  When  the  correct  anticodon  interacts  with  the 
mRNA codon, a change in ribosomal conformation occurs which leads to 
altered positions of active site residues in the bound EF-Tu, with activation 
of EF-Tu GTPase activity. As GTP on EF-Tu is hydrolyzed to GDP + Pi , 
EF-Tu undergoes a large conformational change and dissociates from the 
complex. This allows EF-Ts to interact with EF-Tu in order to reactivate 
EF-Tu by guanine nucleotide exchange. Interaction with EF-Ts causes EF-
Tu to release its bound GDP. Upon dissociation of EF-Ts, EF-Tu binds 
GTP, which is  present in the cytosol at higher concentration than GDP. 
After binding GTP, EF-Tu is ready for another functional cycle.

The structures of EF-Ts and Ef-Tu are available.

5.3 2-oxoisovalerate  dehydrogenase

2-oxoisovalerate  dehydrogenase  is  an  enzyme  which  catalyzes 
decarboxylation of branched chain 2-oxo acids, such as 2-oxoisovalerate, 
2-oxoisocaproate and 2-oxo-3-methylvalerate. An example reaction would 
be:

3-methyl-2-oxobutanoate + CoA + NAD+ ↔ 2-methylpropanoyl-CoA + 
CO2 + NADH

The subunit structure of this enzyme is a tetramer consisting of alpha and 
beta chains.  Mutations in  the subunits  cause maple syrup urine disease 
types IA and IB, which is characterized by physical and mental retardation,

problems with feeding and a maple syrup odor to the urine.

A 2-oxoisovalerate dehydrogenase structure is available
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6. Experimental procedures

6.1 Dataset

Three datasets of interacting proteins were used for this study:

• Elongation factors Ts and Tu (1487 sequences each)

◦ Length of aligned sequences:

▪ EF-Ts: 862 residues

▪ EF-Tu: 640 residues

• 2-oxoisovalerate, subunits A and B (205 sequences each)

◦ Length of aligned sequences:

▪ Subunit A: 988 residues

▪ Subunit B: 1301 residues

• Copper pumps and chaperones ( 255 sequences each) 

◦ Length of aligned sequences:

▪ Copper pump: 1867 residues

▪ Copper chaperone: 362 residues

6.2 Removing redundancy

A number of  sequences in  the datasets  downloaded from Uniprot  were 
found to be redundant. These had to be removed prior to data analysis. 
This was achieved by using an algorithm, supplemented.

6.3 Calculating the phylogenetic parameters

An algorithm, supplemented, was created to combine the corresponding 
sequences based on their species of origin into a format that could be used 
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as an input for constructing a phylogenetic tree.

A  Neighbor-joining  method  was  performed  on  our  datasets  using 
ClustalX2.

6.4 Calculating independent and correlated scores 

 

The  independent  score  Qi,  correlated  score  Qc and  tree-dependent  Q
c
t 

score  were  calculated.  In  order  to  remove  false  positives  that  were 
generating significant background noise, the correlated and tree-dependent 
score was subtracted by a value of independent score. Graphs generated 
using these data are supplemented.

6.5 Generating controls

Two  types  of  controls  were  generated  in  order  to  test  the  statistical 
significance of  our  data.  Completely  random  sequences  of  length 
comparable  to  the  ones  analyzed  were  generated  using  the  method 
developed  by  Stothard  (2000),  using  the  software  “Random  Protein 
Sequence” from the Sequence Manipulation Suite.  In  addition,  controls 
that were based on the analyzed sequences but had 20 random mutations 
introduced  into  each  were  generated  by  the  software  “Mutate  Protein” 
from  the  Sequence  Manipulation  Suite.  Graphs  of  analyzed  sequences 
versus control sequences are provided as a supplement.

6.6 Calculating inter-residual distances

Distances were calculated from the PDB structures which were used in the 
alignments.  Comparison  between  Cα and  scores  was  done  in  order  to 
determine whether residues are directly interacting or not.  Figures 15  & 
16 show the distribution of the inter-residual distances versus coevolution 
score.

07/10/10 13



6.7 Calculating the frequency of residues

The  occurrence  of  residues  was  calculated  in  order  to  distinguish  the 
coevolving residues from the  co-conserved ones.  Co-conserved residues 
generate false positives and must therefore be eliminated. It was observed 
that  few  residues  with  high  coevolution  score  were  co-conserved.  In 
Figures 17 & 18 plot frequency versus score is provided.

 7. Results and discussion

7.1 Coevolution score comparision within protein domains

In our study, we have obtained coevolution scores from comparing two 
interacting domains: A (mostly EF-Ts) and B (mostly EF-Tu). The results 
are represented in graphical form. The penalizing e-value is shown in the 
topmost lefthand corner, scores are on the Z-axis, and A with B are on the 
X and Y axes. Graph data is normalized, which is a compromise between 
ease of computation and number of peaks / peak sharpness.

In Figure 3, it is possible to see the coevolution scores in a variant of EF-
Ts and EF-Tu with no gaps removed. The gaps generate large peaks. Tree-
ignorant (top layer) and tree-aware (bottom layer) methods show the same 
overall  pattern,  implying  that  the  relationship  between  peaks  does  not 
change even when taking the time factor into account. 
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Removing  the  gaps  which  generate  many  false  positives  changes  the 
picture drastically, as can be seen in the figures that follow.

In  Figure 4,  the Qi-based (coevolution-independent) score is shown. In 
Figure 5, the score is made based on Qc (coevolution-dependent).
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 Two different methods were used in order to remove false positives that 
generated  significant  background  noise.  The  first,  shown  in  Figure  6, 
involved subtracting the Qi value from Qc. The second, as in Figure 7, 
was based on subtraction of Qi from Q

c
t, the tree-aware score.

As  expected,  the  score  values  changed  slightly,  but  the  overall  pattern 
remained the same.
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When the penalizing value  ε was increased from 0.7 to 0.8, the graphs 
changed  only  slightly,  with  the  overall  pattern  remaining  the  same 
(Figures 8 – 10). We observed from both sets of results that elongation 
factor(EF-Ts) has different properties at ends. On the starting side of the 
sequence alignment we found high score values (normalized), which refers 
to coevolving sites from residue number 25 to 35 while at the other end of 
sequence scores are very low as this site is highly variable in the other 
aligned  sequences  and  in  many  case,  these  end  residues  are  missing, 
leading to a low coevolution score.   

We further analyzed another domain set, obtained from PDB file 1QS0. 
This data was tested because we have information about its coevolving 
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residues  from  the  studies  performed  by  David  Haussler.  Figure   11 
illustrates that we have two sites in subunit B coevolving with three sites 
with subunit A. Visualization of these residues are shown in later part of 
report.

It was also attempted to generate coevolution scores of completely random 
sequences. The result, shown in  Figure 12, indicates that no significant 
coevolution was detected (note the scale).  Figure 13  compares this data 
with the score of copper pump-chaperone pairs. Additionally,  Figure 14 
shows the coevolution scores for Ts-Tu pairs with 20 random mutations in 
each sequence.
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7.2 Coevolution score comparison with inter-residual distances

It  was  in  our  interest  to  calculate  a  distribution  of  coevolving  scores 
against  inter-residual  distances  so  that  we  could  confirm  the  fact  that 
coevolving residues  are  not  always  in  the  contact.  Cα distances  within 
residues were calculated. We plotted two graphs  (Figures 15 & 16) for 
elongation factors Ts-Tu and 2-oxoisovalerate dehydrogenase subunits A 
and B, respectively. In both plots, we can observe that highly coevolving 
residues tend to be not very far apart, but still not in close contact. 
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7.3 Coevolution score comparison with co-conservation

Pairs of positions from two different domains might be fully conserved and 
could lead to false positive coevolving pairs in some cases.  In Figure 17, 
we have demonstrated that highly co-conserved residues in Ts-Tu ( >95% 
identity)  are  not  involved  in  coevolution  (score  is  Qc-Qi).  It  can  be 
observed that many highly co-conserved sites have low coevolution scores. 
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We can also infer that all the positions which have less than 50% identity 
are generating a very low coevolution score. 

Figure  18 shows  the  same  pair  of  sequences  with  a  Qc  score  and  a 
penalizing  e-value  of  0.8,  in  which  the  coevolving  residues  are 
highlighted.
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In Figure 19, the top 20 coevolving residues from Ts-Tu were highlighted 
on the PDB structure 1efu  and annotated (some were redundant).
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Figure 20, based on the 1qs0 PDB file of 2-oxoisovalerate dehydrogenase 
shows similar data to Figure 19. Figure 21 has residues of 2-oxovalerate 
dehydrogenase that coevolve according to Yeang and Haussler highlighted.

8. Conclusions

• From the results  we can conclude that  we can predict  coevolving 
residues from the multiple sequence alignment using both tree-aware 
and tree-ignorant methods, which give a similar coevolution pattern.

• Coevolving residues need not be in direct interaction.

• Coevolving residues have been found in interdomain pairs, many of 
which belong to the hydrophobic cores.

• Coevolving residues can be detected only after a certain degree of 
co-conservation. However, high co-conservation does not necessarily 
imply co-evolution.

• The  coevolving  residues  for  an  example  protein  pair  (2-
oxoisovalerate  dehydrogenase  subunits  A and  B)  calculated  using  our 
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method, correspond to the coevolving residues for that protein according 
to data provided by Yeang and Haussler (2007). 

9. Future perspectives

Considering the importance and applicability of this method, we would 
like to continue our work and expand this model with use of the maximum 
likelihood  procedure  and  then  also  incorporate  weighted  parsimony 
methods.  We  have  implemented  Sankoff's  dynamic-programming 
algorithms and would  like  to  compare  the  results  obtained  using these 
methods with the model we introduced in our studies.       

10. Acknowledgments

The authors would like to thank Jotun Hein for his esteemed guidance. We 
would also like to thank Dr. Soren Thirup, Dr. Poul Nissen and Dr. 
Christian Storm Pedersen for their productive feedback. We would also 
like to thank everyone at BiRC who gave us useful advice related to this 
project.

11. References

Edgar, R. C. (2004). "MUSCLE: a multiple sequence alignment method 
with reduced time and space complexity." BMC Bioinformatics 5: 113

Yeang, C. H. and D. Haussler (2007). "Detecting coevolution in and 
among protein domains." PLoS Comput Biol 3(11): e211

Stothard, P. (2000). "The sequence manipulation suite: JavaScript 
programs for analyzing and formatting protein and DNA sequences." 
Biotechniques 28(6): 1102, 1104

Felsenstein, J. (1981). "Evolutionary trees from DNA sequences: a 
maximum likelihood approach." J Mol Evol 17(6): 368-376

Caporaso, J. G., S. Smit, et al. (2008). "Detecting coevolution without 
phylogenetic trees? Tree-ignorant metrics of coevolution perform as well 
as tree-aware metrics." BMC Evol Biol 8: 327

07/10/10 24



12. Supplements

12.1 Script 1: coevolution score generation
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12.2 Script 2: removing redundancy
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