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1. Introduction 

 

This report is divided into two parts. Part one contains brief descriptions of different 

Molecular Dynamics (MD) methods, starting from well know all-atom (AA) approach, where 

all atoms are well described, and interactions between them are modelled based on energy 

potential functions. Next method described in this report is simplified method known as a 

MARTINI Coarse Grained (CG) model [1-4], which is simplification of AA description at the 

residue level, allowing longer simulations, but failing in reproducing secondary and tertiary 

structure of protein. Third method is combination of MARTINI CG force field and additional 

restraints put on top of initial protein structure [5]. This Elastic Network Model allows to 

simulate proteins for longer time scale which is out of reach for AA simulations, but at the 

same time keeping secondary and tertiary structure unchanged. However, there are some 

biologically and chemically interesting phenomena that requires conformational changes. To 

be able to observe those changes a new method is proposed, called domELNEDIN. In this 

method the structural scaffold is put on to each domain separately, locking intra domains 

movements, at the same time allowing inter domain movements. All methods are described 

and compared.  

The second part of the report describes Principal Component Analysis. It is also divided in 

two. In part one all mathematical background is explained on simple example. The second 

part is an evaluation of PCA on a trajectory obtained from AA simulation. 

The report is closed with conclusions about all different MD description levels, as well as 

about PCA.   
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2. Computer Simulations 

Computer simulation provides us with a model which is generally simplified because of 

deliberately neglecting factors with low impact on the test object (i.e., elimination of certain 

external conditions). Thanks to the use of digital machines one can relatively accurately 

mimic a real object or phenomenon. Computer simulation is a connection between theory and 

experiment, and therefore often appears in the concept of a computer experiment. Simulation 

methods allow assessment of the validity of the assumed model by comparing the results 

obtained from simulation and experiment. They are also capable of verifying the theory by 

comparing the theoretical and simulation results, referring to the same model. Often, after a 

simulation, it appears that it is not only a confirmation of an existing theory, but it is also the 

basis for new concepts.  

 

2.1. Molecular Dynamics Simulations 

 

Classical molecular dynamics simulations use Newton's equations of motion to 

calculate trajectories of particles, starting from the defined configuration. For each particle in 

the system, the total force acting on it is calculated from the interactions with other particles. 

The acceleration, together with the prior position and velocity, determines what the new 

position will be after a small time step. 

 

2.1.1. Force field 

 

A molecular dynamics simulation requires the definition of a potential function, or a 

description of the terms by which the particles in the simulation will interact. Potentials may 

be defined at many levels of physical accuracy; those most commonly used in chemistry are 

based on molecular mechanics and embody a classical treatment of particle-particle 

interactions that can reproduce structural and conformational changes but usually cannot 

reproduce chemical reactions. Thus, the force acting on an atom can be found as a negative 

derivative of the potential energy: 

 

                   (1) 

 

where the potential energy V is computed from bonded and non-bonded interactions: 
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where rij = ri − rj , kb is the bond stretching constant, r0 is the equilibrium bond distance, kθ is 

the bond angle constant, θ0 is the equilibrium bond angle, τ is the torsion angle, ϕ is the phase 

angle, and Vn is the torsional barrier. The last two non-bonded terms in the potential are 
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Lennard-Jones potential and coulomb interaction, in which   

is the van der Waals well depth, σ is the van der Waals 

diameter, q is the charge of each atom, and ε is dielectric 

constant. The stretching and bending energy equations are 

based on Hooke’s law, and they estimate the energy 

associated with vibration about the equilibrium bond length 

and bond angle, respectively. The torsion energy is used to 

correct the remaining energy terms and represents the amount 

of energy that must be added to or subtracted from other 

energy terms to make the total energy agree with experiment 

or quantum mechanical calculation for a model dihedral 

angle. The non-bonded energy represents the pair-wise sum of 

the energies of all possible interacting non-bonded atoms i < j. The non-bonded energy 

accounts for repulsion (1/r
12

 dependency), van der Waals attraction that occurs at short range 

(1/r
6
 dependency), and the electrostatic contribution modelled using a Coulombic potential. 

The electrostatic energy is a function of the charge on the non-bonded atoms, their interatomic 

distance, and a molecular dielectric expression that accounts for the attenuation of 

electrostatic interaction by the environment. These equations together with the parameters 

required to describe the behaviour of different kinds of atoms (i.e. atom types, atomic 

charges) and bonds, are called a force-field. 

 

2.1.2. Simulation setup 

 

Molecular dynamics simulations consist of three stages: First, the input data has to be 

prepared. Second, the production simulation can be run and finally the results have to be 

analyzed and be put in context.  

Before starting a simulation pdb structures have to be obtained. These can be retrieved 

from the Protein Databank (1). The PDB file contains a lot of information regarding the 

protein, the experimental methods used, conditions, and the Cartesian coordinates. Sometimes 

when structure is disordered, and there are residues with missing side chains, it is necessary to 

rebuild the structure. Sometimes the structure contains non-standard residues or ligands, in 

this case it is advisable to find suitable parameters in literature or determine them.  As there 

are many types of force fields (CHARMM, AMBER GROMOS, OPLS) transferring 

parameters from one force field to another is forbidden, as they cause different interactions, 

and may misrepresent the results of simulation.  

First step is to construct the topology, which describes the system in terms of atom 

types, charges, bonds. It is important that the topology matches with the structure, which 

means that the structure needs to be converted too. This can be done by Gromacs [6] 

pdb2gmx program (for other methods described in next chapters PERL (5) and FORTRAN 

(5) scripts are used). This program is designed to build topologies for molecules consisting of 

amino acids and other building blocks. Using it hydrogen atoms present in the file will be 

rebuilt according to the description in the force field. As the conversion of the structure 

involves the deletion and/or addition of hydrogen atoms and may cause strain to be 

introduced, e.g. due to atoms positioned too close together, it is necessary to perform an 

r 

τ 

rij i j 

θ 

Figure 1. Description of different 

parameters used in potential  

energy equations. 
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energy minimization (EM) on the structure. This is done by combining the structure and the 

topology into a single description of the system, together with a number of control parameters 

for the energy minimization stored in em.mdp mdrun (2) file using grompp (2) command. 

During the energy minimization the program generates output files and prints information 

regarding the system and other control parameters. One piece of information is about the 

charge of the system. As the structure is now relaxed, it should be solvated and minimized. To 

add solvent the editconf (2) command is used. In this step the dimension of simulation box is 

set up, and the solvent model, which is more or less intimately linked to a force field, is 

chosen. If the system has non-zero charge it is necessary to add counter ions, which will 

neutralize the system. To do so, some of solvent molecules are replaced by ions. This can be 

done in two ways, by putting precise number of ions or adding ions up to a certain 

concentration. The program genion (2) can take care of both tasks. As in the EM case it 

requires an input file containing both the structure and the topology. Now the whole 

simulation system is defined, but as ions are added, they may cause overlapping atoms or 

equal charges that are too close together, the EM step has to be repeated. After all 

minimization the solvent should adapt to the protein. It is done by position restraints of the 

proteins’ non-hydrogen atoms keeping them more or less fixed to the reference positions so 

the solvent move freely around the protein. The control parameters for this step are stored in 

pr.mdp file, and once more the input file is generated by grompp command and mdrun to run 

the simulation. The last step is to start a production run. In the control parameter md.mdp file 

the number of steps multiplied with the time step describes the length of the simulation. There 

are many different parameters that can be set up to efficiently mimic real behavior by the 

simulated system. The last step is to take the final structure and topology files resulting from 

the preparation and combine them into a run input file using grompp, and then using mdrun 

command to run the simulation. 

 

3. All Atom Simulations  

 

MD simulations where all atoms of the biomolecular system are represented (AA) are 

well-established and deliver a generous amount of details and insights of simulated system. 

However, the time scale is limited to hundreds of nanoseconds (to run the simulation in 

reasonable time), and the accessible timescale is mainly limited by the fastest movements in 

the system which dictates the time steps size.  

 

3.1. AA System 

An apo form of the Periplasmic Leucine Binding Protein (LBP), was simulated using 

Gromacs (2) package with AMBER03 force field (3), starting from the pdb structure (1USG). 

All snapshots were generated using VMD program (4). Protein was solvated with water 

molecules and Na
+
 ions were added to neutralize the system. Simulation was carried out with 

NPT ensemble (constant number of N atoms, constant pressure P, and temperature T) at 300 

K and 1 atm. System containing approximately 100 000 atoms was equilibrated and simulated 

for 100 ns with time step of 2 fs. 
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3.2. AA Results 

After analyzing trajectory it turns out that structure found its minimum energy 

conformation and remained stable after first few ns of production run. The root mean square 

deviation (RMSD) compared to the first frame of simulation, stays at the same level, around 3 

Å (Fig. 2). 

 

Figure 2. RMSD of LBP, AA simulation. 

Analyzing snapshots from the simulation (Fig. 3), it can be observed that structure remains in 

the same stable form confirming the behavior of the RMSD plot. 

 

Figure 3. Snapshots from all-atom simulation at 0, 25, 50, 75, 100 ns. 

The simulation is very stable and can be use as test bed, where structure and function of 

protein and the effects of changing environment and thermodynamic settings can be tested 

also the individual events in the protein function can be observed directly. In other words AA 

MD are well-established and deliver a generous amount of information about studied system. 

However, the time scale is limited to hundreds of nanoseconds, and the large conformational 

changes are on the millisecond time scale, which is out of range for AA simulations.  

 

4. Simplified Methods 

When large structural rearrangements are involved, it is necessary to sample a time scale 

in the micro- to millisecond range. The accessible timescale is mainly limited by the fastest 

movements in the system which dictates the size of the time steps. However, as fast and slow 

molecular dynamics are sufficiently independent, coarse grained descriptions of the system 

can be applied. In a CG description fast vibrations are ignored, and a significant speedup is 

gained compared to AA approaches. Recently, CG models have gained great popularity due to 

their balance between accessible time scale and detail level.  
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4.1. MARTINI Coarse Grained Approach  

MARTINI [2] is a CG force field which has become very popular due to its success in 

parameterizing a large library of biologically relevant building blocks, and its also sufficiently 

detailed description of system. Still, the CG models at this level fail to consistently reproduce 

the secondary and tertiary structure of especially large and globular proteins, and different 

ways of restraining the CG model to reproduce the correct structural scaffold have been 

developed. [5]. In this model atoms are combined into CG beads (Fig. 4) in order to reduce 

the number of freedom degrees. A backbone bead for each residue is placed at the location of 

center of mass (COM) of backbone atoms: N , Cα, C, O. 

 

Figure 4. Mapping atoms into beads. 

4.1.1.  CG Basic Parametrization 

Parametrization of the system includes different types of beads (Fig. 5). There are four 

main types of particels: polar (P), nonpolar (N), apolar (C), and charged (Q), and they can be 

further divided denoting the hydrogen-bonding capabilities: d – donor, a –acceptor, da – both, 

0 – none, or by a number indicating the degree of polarity (from 1 – low to 5 – higher) [2].  

 

Figure 5. Different types of beads (5). 

Bonded interactions are described by the set of potential energy functions acting between 

bonded sites i, j, k, and l: 
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where r0 is equilibrium distance, υ0 angle, dihedral angles  ψ0 and ψi0. The force constant k 

includes flexibility of the molecule at CG level mimicking the collective motions at AA level. 

Bonded potential Vbonds represents chemically bonded sites, angle potential Vangles chain 

stiffness, and improper dihedral angle potential Vimpropers is used to prevent out-of-plane 

distortions of planar groups. Proper dihedrals Vdihedrals are used to impose secondary structure 

of the peptide backbone [2].   

  The non-bonded interactions between pairs of particle i and j at distance rij are 

modeled using Lennard Jones potential: 

          
   

   
   

  

  
   

   
   

 

                     (7) 

where εij depends on interacting particle types i.e. for interactions between strongly polar 

groups εij= 5.6 kJ/mol, but for groups mimicking the hydrophobic effect  εij= 2.0 kJ/mol. The 

effective size of particles is governed by LJ parameter σ, which for normal types of particle is 

σ= 0.47 nm but for model ring-ring interactions is σ= 0.43 nm [2]. For charged groups 

interactions between Q type beads are described via a Coulombic energy function, with a 

relative dielectric constant εrel=15: 

    
    

           
                     (8) 

Non-bonded interactions between nearest neighbors are excluded [2]. 

4.1.2. CG System 

The structure in minimum energy conformation from AA simulation was used to build 

the CG system. After conversion of atoms into beads, equilibration procedure was carried out. 

Protein was solvated with water molecules and counter Na
+
 ions were added. System was 

simulated for 25 ns which corresponds to 100 ns of AA simulation [2] with a 25 fs time step 

using NPT ensemble at 300K and 1atm. System contained approximately 9 500 beads. The 

MARTINI-2.1 force field (4) was used.  

4.1.3. CG Results 

The MARTINI CG model without elastic network on top is not expected to be able to 

maintain the overall structure of protein. Snapshots shows that structure is collapsing (Fig. 6), 

and the RMSD (Fig. 7) is higher than in case of AA simulation. 
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Figure 6. Snapshots from CG simulation at 0, 25, 50, 75, 100 ns. 

 

Figure 7. RMSD of LBP – AA simulation in red, CG simulation in blue. 

The structural changes in the two models (AA and CG) are very different with RMSD ending 

value 7.1 nm between the structures at 100 ns. When we compare RMSD per residue from 

both simulations (Fig. 8) it appears that the CG model is too flexible compared with the AA 

model. 

 

Figure 6. RMSF per residue of LBP – AA simulation in red, CG simulation in blue. 

The CG models at this level fail to consistently reproduce the secondary and tertiary structure 

of presented protein. For modeling protein structure within this model, the secondary structure 

needs to be stabilized by simple harmonic restraints on the backbone beads and is thereby not 

allowed to change during a simulation. This approach is known as the ELNEDIN method [5]. 

4.2. ELNEDIN Approach 

In ELNEDIN (Elastic Network in Dynamics) [5] model we put an elastic network on top 

of a MARTINI model (Fig. 9) to restrain secondary and tertiary structure of protein.  
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Figure 9. Adding elastic network on top of CG model. 

 

The basic idea remains the same as in CG model, with some exceptions. Firstly, the backbone 

beads of residues are now placed at the location of Cα, and not in the COM like in simple CG.  

 

Figure 9. Structural mapping and bond connectivity of residues Phe, Tyr, His and Trp. (supplement data to [5]).  

Secondly, there is difference in maintaining the ring structure in residues. For both the Phe 

and the Tyr the extra bond is used to maintain the ring structure, and in case of His and Trp 

the asymmetry in rings is considered (Fig 10). 

4.2.1. Elastic Network Parametrization 

ELNEDIN is based on MARTINI approach and uses its force field for simulation. The 

additional parameterization that has to be done concerns structural scaffold. There are two 

main parameters that have to be set up before simulation, during the conversion from AA to 

CG-ENM model. Those are: the cutoff distance between point of masses Rc [nm], which 

describes the range of points that can be connected with additional elastic bond, and the 

spring force constant Kspring [kJ·mol
-1

·nm
-2

], which describes stiffness of the elastic bond. The 

range of those parameters is free, but the default that seems to work the best in most cases is 

Rc = 0.9 nm and Kspring = 500 kJ·mol
-1

·nm
-2

 [5]. For low Rc and Kspring the protein is more 

flexible than for higher values of those parameters. 

4.2.2. ELNEDIN System 

Structure in minimum energy conformation from AA simulation was used to build 

CG-ENM system. During conversion of atoms into beads different parameterization for 

Coarse Grained (CG) 
Model 

ELNEDIN Model 
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structural scaffold was used. The parameters were varied systematically with Rc [nm] ∈ {0.8, 

0.9, 1.0} and Kspring [kJ·mol
-1

·nm
-2

] ∈ {50, 500, 5000}, then the equilibration procedure was 

carried out. Protein was solvated with water molecules and counter Na
+
 ions were added. 

System was simulated for 25 ns which corresponds to 100 ns of AA simulation [4] with a 10 

fs time step using NPT ensemble at 300K and 1atm. System contained approximately 9 500 

beads. The MARTINI-2.1 force field (1) was used.  

4.2.3. ELNEDIN Results 

The model is constructed to represent a structural scaffold around the initial structure. 

The collapse is therefore not seen in this case (Fig 11.) and RMSD remains stable at the same 

level as for the AA simulation (Fig 12.). 

 

Figure 11. Snapshots from CG-ENM simulation at 0, 25, 50, 75, 100 ns. 

 

Figure 12. RMSD per residue of LBP – AA simulation in red, CG-ENM simulation in green. 
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Figure 13. RMSF per residue of LBP – AA simulation in red, CG-ENM simulation in black. 

For all different scaffold settings it seems that proposed values [5] are in the best agreement 

with AA in reproducing its flexibility (Fig. 13). However, as the structural scaffold is put on 

top of the initial conformation of simulated protein, structural changes can’t be observed. In 

this case different approach is needed.  

4.3. domELNEDIN Approach 

This model is based on ELNEDIN method with difference in the way of combining ENM 

with MARTINI CG model. The structural scaffold is put on each domain of the protein 

separately, meaning that there are no elastic bonds connecting atoms from different protein 

domains. 

                                                  

Figure 14. Adding elastic network on each domain separately of CG model. 

Coarse Grained (CG) 
Model 

domELNEDIN Model 
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It is possible to lock inter domains movements, as the RMSD between the same domains in 

two different LBP conformations (open and closed form) are much smaller than overall 

RMSD between those conformations. This approach is called domELNEDIN and allows 

protein to change conformations thanks to free domain movements with respect to each other.  

4.3.1. domELNEDIN System 

All steps are exactly the same as in simple ELNEDIN model. Structure in minimum 

energy conformation from AA simulation was used to build CG-ENM system. During 

conversion of atoms into beads different parametrization for structural scaffold was used 

varying systematically with Rc [nm] ∈ {0.8, 0.9, 1.0} and Kspring [kJ·mol
-1

·nm
-2

] ∈ {50, 500, 

5000}, although the ENM was put on each domain separately. The equilibrated procedure was 

carried out including protein solvation with water molecules and addition of counter Na
+
 ions. 

System was simulated for 25 ns which corresponds to 100 ns of AA simulation [4] with a 10 

fs time step using NPT ensemble at 300K and 1atm. System contained approximately 9 500 

beads. The MARTINI-2.1 force field (1) was used.  

4.3.2. domELNEDIN Results 

The model is constructed to allow free domain movements while maintaining the internal 

domain structures. Analyzing snapshots can be observed that second domain changed its 

position with respect to the first one at 100 ns (Fig. 14). 

 

Figure 14. Snapshots from domELNEDIN simulation at 0, 25, 50, 75, 100 ns. 

For all different scaffold settings it seems that proposed values for ELNEDIN model [5] are 

also the best for domELNEDIN in reproducing AA flexibility (Fig. 15). 
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Figure 15. RMSF per residue of LBP – AA simulation in red, domENEDIN simulation in black. 

This model is as limited as the original ELNEDIN model with respect to reproducing the 

observed AA flexibility within the domains. However, it is more flexible than the ELNEDIN 

model, due to the non-existing interdomain restraints (Fig. 16). The structure at 100 ns from 

the ELNEDIN and domELNEDIN simulations differ with RMSD of 2.6 Å. 

 

Figure 16. RMSF per residue of LBP – ELNEDIN in green, domELNEDIN in black. 
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5. Principal Component Analysis   

When measuring only two variables, and then analyzing them using different conditions it 

is easy to plot this data and to visually assess the correlation between these two factors. 

However, when number of factors increase to thousands, it becomes impossible to make 

visual inspection of the relationship between those factors or conditions describing them . One 

way to make sense of this data is to use Principal Component Analysis (PCA), which is a 

common statistical technique for finding and identifying patterns in data of high dimension, 

and expressing it in such a way as to highlight their similarities and differences. The  main 

advantage of PCA is that once you have found these patterns in your dataset you can 

compress the data, i.e. by reducing the number of dimensions, without much loss of 

information.  

 

5.1. Mathematical Background 

 

To use PCA it is necessary to understand mathematics on which this method is based. The 

background knowledge presented in this chapter covers standard deviation, covariance, 

eigenvectors and eigenvalues. For this purposes 2-dimensional made-up data set is used. 

 

5.1.1. Standard Deviation 

 

Assume there are two example sets describing the same event, set1 and set2: 

 

set1 = (36 40 45 44 26 33 38 32 36 55 23 48)     (9) 

 

set2 = (8 35 20 24 15 29 28 25 20 40 9 35).            (10)          

 

There are number of things that can be calculated from those datasets, such as the mean value: 

 

   
   

 
   

 
      (11) 

 

where Xi refer to an individual number in this data set, and n is a number of elements in the X 

set. To find mean value all numbers in data set are summed up and then divided by the total 

number of individuals. The mean describes a value for a middle point, for example for set1 

the middle point is 38, and for set2 it is 24. We can use mean value to measure how spread the 

data is, calculating the average distance from the mean of the data set to a point. This is 

known as the Standard Deviation (SD). For computing SD of a sample s, the squares of the 

distance from each data point to the mean of the set are computed, summed, divided by (n – 

1), and then the positive square root is taken: 

 

   
                

   

     
  

          
   

     
    (12)
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set1 

Xi                

36 -2 4 

40 2 4 

45 7 49 

44 6 36 

26 -12 144 

33 -5 25 

38 0 0 

32 -6 36 

36 -2 4 

55 17 289 

23 -15 225 

48 10 100 

s  9.13 

  

set2 

Xi                

8 -16 256 

35 11 121 

20 -4 16 

24 0 0 

15 -9 81 

29 5 25 

28 4 16 

25 1 1 

20 -4 16 

40 16 256 

9 -15 225 

35 11 121 

s  10.15 

 

Table 1. Calculation of standard deviation. 

 

For two data sets above, it is shown (Tab.1 and Fig. 17) that the second set has a much larger 

standard deviation (10.15) than the first one (9.13) due to the fact that the data is much more 

spread out from the mean value. 

 
Figure 17. Plot of original data from set1 and set2. 

 

5.1.2. Variance 

 

Variance is another measure of the spread of data in a data set, and for sample of data  

is defined as: 

       
                

   

     
 

          
   

     
        (13) 

0

10

20

30

40

50

60

0 10 20 30 40 50 60

se
t2

set1



Iwona Siuda; RTiB Report 

18 
 

 

SD s is the square root of the variance s
2
. For set1 variance s

2 
= 83.27 and for set2 s

2 
= 103.09, 

the theory [7] states that first principal component has a larger variance than any of the others, 

thus values from set2 will be based to build the first PC. 

 

5.1.3. Covariance 

 

Standard deviation and variance only operate on 1 dimension, so that one can only 

calculate the standard deviation for each dimension of the data set independently of the other 

dimensions. However, it is useful to have a similar measure to find out how much the 

dimensions vary from the mean with respect to each other. Covariance is such a measure 

between 2 dimensions, so two data sets X and Y each containing n values of variables can 

define covariance as: 

 

         
                

   

     
    (14) 

 

The most important information from this measurement is a sign of the result. If the value is 

positive, than it indicates that both dimensions (X and Y) increase together, meaning that if the 

values from data set X increase so do the values from set Y. If the value is negative, than 

dimensions behave in opposite way, if one increases, the other has to decrease. Beside 

negative and positive value, covariance between 2 dimensions can be zero, meaning that they 

are independent of each other. For sets set1 and set2 covariance is cov(X,Y) =       meaning 

that they are positively correlated. 

  

5.1.4. Covariance Matrix 

 

If there are more than two data sets, the covariance matrix C can be set as: 

 

                                   (15) 

 

where     is a square matrix with n rows and n columns, and Dimi and Dimj are the ith and 

jth dimensions, respectively. In simple way each entry in the matrix is the result of calculating 

the covariance between two separate dimensions, and for described above example it is 2 

dimensional.   

 

      
                
                

    
          
           

               (16) 

 

Down the main diagonal, the covariance value is between one of the dimensions and itself 

meaning that it is nothing else than the variances for that dimension. The other point is that 

the matrix is symmetrical about the main diagonal, as                  .  
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5.1.5. Eigenvalues and Eigenvectors 

 

Many application problems involve applying a linear transformation repeatedly to a given 

vector. The key to solving these problems is to choose a coordinate system or basis for which 

it will be simpler to do calculations involving the operator. If for this equation: 

 

           (17) 

 

where A is n x n square matrix, exist nonzero solution x then λ is said to be an eigenvalue of 

A, and x is said to be an eigenvector belonging to λ. The eigenvectors can only be found for 

square matrices, but not every square matrix has eigenvectors. Usually for n x n there are n 

linearly independent eigenvectors. Another property of eigenvectors is that even if the vector 

is scaled by some amount before multiplying  it, it will still get the same multiple of it as a 

result, as it is not changing its direction but it is getting longer. All the eigenvectors of a 

matrix are orthogonal. 

 Since example covariance matrix is square, the eigenvectors and eigenvalues can be 

calculated:  

   
          
           

           (17) 

The characteristic equation is: 

 

 
            

             
        or                              (18-19) 

 

Thus, the eigenvalues of C are λ1 = 32.53 and λ2 = 153.83. The sum of the firs k eigenvalues 

divided by the sum of all the eigenvalues, represent the proportion of total variation explained 

by the first k principal components [7]. In other words the first principal component explains 

153.83/186.36 = 82.54% of the total variation, while second one only 32.53/186.36 = 17.46%, 

those two PCs explains total motility in the example sets. 

 To find the eigenvectors belonging to λ1, the nullspace of C - 32.53I has to be 

determined, I denotes diagonal matrix, and nullspace means the set of all vectors x for which 

Ax = 0. 

 

           
          
          

     (20) 

 

Solving (C - 32.53 I)x = 0, we get 

  

   1.18, -1)
T
     (21) 

 

Thus, any nonzero multiple of  1.18, -1)
T
 is an eigenvector belonging to λ1. Similarly, to find 

the eigenvectors for λ2, (C - 153.83 I)x = 0 has to be solved.  

 

            
           
           

        (22) 
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In this case any nonzero multiple of  -0.84801, -1)
T
 is an eigenvector belonging to λ2. Another 

important thing to know about eigenvectors is that they are scaled to have a length of 1 in 

order to keep them standard. This is because, the length of a vector doesn’t affect whether it’s 

an eigenvector or not, whereas the direction does. To scale eigenvectors the original vector 

has to be divided by its length. The first eigenvector is then presented as: 

 

 
    
  

                          
    

     
            (23) 

 

and the second eigenvector: 

 

 
     

  
                            

     
     

              (24) 

 

Eigenvectors can be presented as: 

 

              
         

          
                    (25) 

 

It is important for PCA that these eigenvectors are both unit eigenvectors i.e. their lengths are 

both 1. 

 

 
Figure 18. A plot of the normalized data with the eigenvectors of the covariance matrix overlayed on top. First 

eigenvector – dashed line. Second eigenvector – dotted line.  

 

As expected from the covariance matrix, two variables do indeed increase together. They 

appear as diagonal dotted and dashed lines on the plot. They are perpendicular to each other, 

and they go through the middle of the points, like drawing a line of best fit. The eigenvector 

mark as a dotted line is showing that these two data sets are related along that line. The 
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second eigenvector gives the other, less important, pattern in the data, that all the points 

follow the main line, but are off to the side of the main line by some amount. So, by this 

process of taking the eigenvectors of the covariance matrix, lines that characterize the data 

have been extracted. It turns out that the eigenvector with the highest eigenvalue is the 

principal component of the data set. In general, once eigenvectors are found from the 

covariance matrix, the next step is to order them by eigenvalue, highest to lowest.  

 

5.1.6. Generating New Vector and New Data 

 

A new vector is a name for a matrix of vectors, constructed by taking the eigenvectors that 

one want to keep from the list of eigenvectors, and forming a matrix with these eigenvectors 

in the columns. For the example sets it will look the same as eigenvector matrix: 

 

                                            (26) 

 

 
         

          
 .              (27) 

 

One may consider both eigenvectors or take only one that is more significant to describe the 

data set: 

 

 
     
     

 .                     (28) 

 

The last step is to take the transpose of NewVector so that the eigenvectors in the columns are 

now in the rows, with most significant eigenvector at the top, and multiply it by the 

DataAdjust which is a matrix containing values of deviation from mean for both set1 and set2, 

also transposed. 

 

                                         (29) 

 

Table.2 NewData derived from transformation with eigenvectors. 

 

Data transformed with first eigenvector Data transformed with second eigenvector 

13.49654 8.82288 

-9.6831 -5.58905 

-1.47661 7.92588 

-3.8806 4.576128 

14.62538 -3.33136 

-0.57961 -7.04727 

-3.05075 -2.58706 

3.117908 -5.22289 

4.344284 1.061688 

-23.198 2.61744 

21.14181 -1.73883 

-14.8572 0.512454 
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1
 

Figure 19. Data transformed with 2 eigenvectors, presenting a new data points.  

 

In Fig. 19. the data is presented using both eigenvectors for the transformation; this plot 

presents the original data, rotated so that the eigenvectors are the axes, as there is no 

information lost in this decomposition. PCA allows to express original data that was in term 

of two axes (x,y) in terms of any two axes. If these axes are perpendicular, then the expression 

is the most efficient. This was why it is important that eigenvectors are always perpendicular 

to each other. When the new data set has reduced dimensionality, then it is only presented in 

terms of the vectors that have left. 

 

5.2. PCA of Trajectory using GROMACS 

 

 In structural bioinformatics PCA is applied to a set of molecular conformations. In this 

chapter trajectory from AA simulation described in Chapter 3 is analyzed using Gromacs v. 

4.0.7 package. 

 

5.2.1. Generating Covariance Matrix  

 

First the covariance matrix is constructed, using g_covar program, which computes the 

covariance matrix of fluctuational motion from an MD trajectory x(t). g_covar removes 

rotational and translational motion by least square fitting to a reference structure, allowing to 

look at the internal motion only. Covariance matrix C of the atomic coordinates is a 

symmetric 3N x 3N matrix described as: 

                                                           
1
  In previous statement it was called second eigenvector, but as it gives the highest contribution to PCA (it is an 

eigenvector corresponding to the highest eigenvalue) we will now referred to it as a first eigenvector. 

-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30

D
at

a 
tr

an
sf

o
rm

ed
 w

it
h
 s

ec
o
n
d
 

ei
g
en

v
ec

to
r 

Data transformed with first eigenvector1



Iwona Siuda; RTiB Report 

23 
 

       
  

 

             

 

                            (30) 

 

where M is diagonal matrix containing the masses of the atoms (mass-weighted analysis) or 

the unit matrix (non-mass weighted-analysis). The covariance matrix C can be diagonalized 

with an orthonormal transformation matrix R: 

 

                                                        (31) 

 

R defines a transformation to a new coordinate system and the columns of R are the 

eigenvectors (stored in eigenvec.trr file), also called principal modes. Using command 

g_covar covariance matrix is generated for 345 Cα atoms:  

 

g_covar -f traj.xtc -s ref_str.pdb -o eigenval.xvg -v eigenvec.trr –ascii covar.dat 

 

Where flag –f means an input file with trajectory (traj.xtc – 400 frames), -s an input for 

coordinate file with reference structure (ref_str.pdb). Flags –v means that eigenvectors are 

written to a full precision trajectory file (eigenvec.trr), and –o means output for eigenvalues 

(eigenval.xvg). Flag –ascii writes the whole covariance matrix to an ASCII file.  

 

 
Figure 20. Covariance matrix computet for 345 Cα atoms. 

 

Fig. 20. presents matrix showing coordinate covariances between Cα atoms. Red mean that 

two atoms move together, so it is reasonable that on diagonal there is a red line. Blue means 

that they move in opposite directions. The intensity of colors indicates the amplitude of the 

fluctuations. From the covariance matrix it is possible to see that group of atoms move in a 

correlated or anti-correlated manner. Knowing that first domain contains Cα with indexes 1 to 

120 and 250 to 330, and second domain Cα with indexes 121 to 249 and 331 to 345, it is 

observable that correlation between atoms in the same domains is higher (lighter areas in the 

plot), meaning that they move in the same group of atoms. In case when atoms from first 
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domain are correlated with atoms from second domain the intensity of blue is much higher 

meaning that both domains move opposite to each other. 

Another important measurement from covariance matrix is a trace of it tr = 4.8122 nm
2
 and it 

is a sum of the eigenvalues. As mentioned in (5.1.5) this sum can be used to describe total 

motility. There are some rules for excluding principal component [1]. One of them says to 

include just enough components to explain 90% of total motility. Second called Kaiser’s 

criterion excludes those PC whose eigenvalues are less than average, i.e. less than one if a 

correlation matrix has been used. In practice often compromise is used, thus Fig. 21. presents 

the percentage and cumulative percentage of variance explained by first 100 from 1035 

eigenvalues. It is shown that 50 first from 1035 eigenvalues can describe approximately  90% 

of total variation it the system.   

 
Figure 21. Percentage (black) and cumulative percentage (red) of variance for first 50 eigenvalues. 

 

5.2.2. Analyzing Eigenvectors 

  

Each amino acid in this example is represented by its Cα atom. As position of each 

atom is described by 3 coordinates (x, y, z), the covariance matrix has the dimension of 3N x 

3N, where N is the number of atoms (in this case N refers to number of amino acids in the 

protein). So as matrix is 3 dimensional it has 3 x 345 = 1035 rows and columns and 1035 

eigenvalues. For the 3N x 3N coordinate matrix there are 345 3-dimentional (x, y ,z) 

eigenvectors computed for each of 400 frames. Below is presented fragment of eigenvec.trr 

file, showing first 8 eigenvectors x for the first frame (counted from n-1): 

 

eigenvec.trr frame 0: 

   natoms=345  step=0  time=0.0000000e+00  lambda=0 

   box (3x3): 

      box[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00} 

      box[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00} 

      box[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00} 

   x (345x3): 

      x[    0]={ 1.18355e+00,  3.99314e-01,  3.27480e+00} 

      x[    1]={ 1.07012e+00,  4.93567e-01,  2.95261e+00} 

0 5 10 15 20 25 30 35 40 45 50

0

10

20

30

40

50

60

70

80

90

100

Eigenvalue index

P
er

ce
n
ta

g
e 

o
f 

v
ar

ia
n
ce

 

ex
p
la

in
ed

 b
y
 e

ac
h
 e

ig
en

v
al

u
e 

(%
)



Iwona Siuda; RTiB Report 

25 
 

      x[    2]={ 1.11421e+00,  3.34410e-01,  2.61641e+00} 

      x[    3]={ 1.23923e+00,  5.36954e-01,  2.32276e+00} 

      x[    4]={ 1.10660e+00,  5.02108e-01,  1.96799e+00} 

      x[    5]={ 1.17910e+00,  7.05479e-01,  1.65667e+00} 

      x[    6]={ 9.10663e-01,  8.00125e-01,  1.40656e+00} 

      x[    7]={ 1.02828e+00,  8.88123e-01,  1.05605e+00} 

      x[    8]={ 8.29841e-01,  1.02164e+00,  7.61136e-01} 

 

Plot below (Fig. 22) presents components of each of 8 first eigenvectors for 345 Cα atoms.   

 
Figure 22. Components of first 8 eigenvectors; coordinate x in red, y in green, z in blue.  

 

 

5.2.3. Graphical representation of principal components 

 

The trajectory can be projected on eigenvectors to give the principal components pi(t): 

 

          
 

                            (32) 

 

The eigenvalue    is the mean square fluctuation of principal component i. The first few PCs 

often describe collective, global motions in the system. The trajectory can be filtered along 

one (or more) PCs. For one PC this goes as follows: 
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                        (33) 

 

The reduction in dimensions afforded by principal component analysis can be used 

graphically. Thus if the first two components explain most of motility, then a plot showing the 

distribution of the objects on these two dimensions will often give a fair indication of the 

overall distribution of data. 

 

 
 

Figure 23. Data projection on eigenvectors. 

 

In Fig. 23 (starting from top left) data is plotted on the first two eigenvectors of the covariance 

matrix, showing equally distribution, where each point corresponds to the one trajectory 

frame. Second plot shows that the variance along the eigenvector 1 axis is greater than along 

the eigenvector 8 axis, meaning that eigenvector 8 provides less information about protein 

behavior. The last plot presents projection on eigenvectors 7 and 8 showing that their 

contribution to total motility is much smaller than the one presented on firs plot, but 

correlation between data is much bigger.  

 Because the covariance matrix is defined in terms of deviations from the trajectory-

averaged coordinates, based on eigenvectors the RMSF plot can be presented (Fig. 24). In 

blue line are indicated fluctuations from the first PC, and in red line fluctuations from the 

second principal component. When for each atom, fluctuations from both PCs are summed 

and compared with the plot from Chapter 4 (Fig. 6: AA fluctuations) it is clear that there is 

not much information that was lost, and only two firs PCs are sufficient do describe 

fluctuations in protein (Fig. 25).  
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Figure 24. RMSF for all protein residues. In blue – derived from PC1, in red derived from PC2. 

 

 
Figure 25. RMSF for all protein residues. In purple – from AA simulation, in green derived from summation of 

PC1 and PC2. 

 

 

The most fluctuating residues are 1, 12, 40, 56, 215 and 295 from first domain, and 148, 

164, 178, and 339 from second domain. Mostly all of them are positioned in loops regions.  
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6. Conclusions 

This report concerns basic knowledge about Molecular Dynamics simulations as well as 

about Principal Components Analysis. It is shown that there are many levels of descriptions 

that can be used to describe simulated system. In fine grained model all atoms are described, 

and all interactions between them are modeled. This approach is powerful tool if one is 

interested in specific interaction that occurs on short time scale. However, if one is interested 

in conformational changes or other biologically or chemically interesting phenomena that 

occur on micro- to millisecond time scale, have to use simplified approaches. Those types of 

descriptions  i.e. CG, where atoms are mapped into beads cause neglection of some of degrees 

of freedom, and so reduces number of interactions. This approach allows to use larger time 

step (around 20-35 fs) and speed up computations. However, as mentioned above, for 

example protein in this report, it fails to reproduce its secondary and tertiary structure. Thus, 

another approach is tested, where an elastic network is put on top of initial conformation to 

maintain secondary and tertiary structure. However this approach is also not sufficient to 

describe conformational changes, as it fix initial structure causing that conformational 

changes cannot be observed. LB protein is resolved in at least two conformations (apo and 

holo form). The RMSD between two LBP conformations is much higher than RMSD for the 

same domains from different conformations. This all leads to new domain level description of 

simulated protein, where EN is put on top of each domain separately locking inter domain 

movements in the same time allowing conformational shifts. This method is referred as 

domELNEDIN, and it seems promising to evaluate it, and extend to other globular and 

membrane proteins.  

Second part of report concerns on Principal Component Analysis. It is shown that for LBP 

AA simulation, it is possible to reduce dimensionality of data extracted from trajectory. 

Protein movement is then analyzed using two first PCs. Some of information is lost but as 

neglected eigenvalues are small, the lost of information is little. In general PCA method 

allows to choose p eigenvectors from all calculated n eigenvectors and present data that now 

has only p dimensions. 
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