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Introduction 

Understanding of transcriptional regulation mechanisms is of fundamental importance 

to the study of biological process such as development, drug response and disease 

pathogenesis [1].Protein-DNA interactions play vital roles in the transcriptional 

regulation. Therefore, identifying the interaction between transcription factors (TFs) 

and their binding DNA is essential to understand many biological processes. Several 

experiments give information on the TF-target gene interactions. One such 

experiment, chromatin immunoprecipitation (ChIP) followed by massively parallel 

sequencing (ChIP-Seq) is a new technology to map protein-DNA interaction in 

genomes [2] and it is based on the enrichment of DNA associated with a protein of 

interest(Figure 1).This experiment begins with the cross-linking of protein-DNA 

interaction using formaldehyde. Then, cells are lysed and DNA is fragmented.  

Fragments bound by protein of interest are then bound by antibody and precipitated. 

After reversing the cross-links and purifying these DNA fragments, a DNA sample 

called “ChIP sample” is obtained. In many experiments, a control sample is prepared 

in parallel using a similar protocol where an aliquot of sheared cell lysate is not 

immunoprecipitated but is otherwise processed normally. This DNA is termed input 

DNA. Compared to the input DNA, ChIP sample is enriched in DNA fragments 

bound by the protein of interest. 
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Figure 1 An overview of the chromatin immunoprecipitation (ChIP) procedure [3]. Cells are 

initially treated with a cross-linking agent that covalently links DNA-interacting proteins to 

the DNA. The genomic DNA is then isolated and sheared, typically by sonication, into a 

suitable fragment size distribution (200-600bp is typically used for ChIP-Seq). An antibody 

that specifically recognizes the protein of interest is then added and immunoprecipitation used 

to isolate appropriate protein-DNA complexes. The cross-links are then reversed and the 

DNA fragment purified.  
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Processing and analyzing ChIP-Seq 

In this section, I describe the key issues and concepts involved in ChIP-Seq data 

analysis. A flowchart of the central steps in the ChIP-Seq procedure is shown in 

Figure 2.The raw data for chromatin immunoprecipitation followed by sequencing 

(ChIP-Seq) is generated by the next-generation sequencing (NGS) platform, such as 

Illumina and ABI SOLiD. These reads are short in length (around 25~30bp; the latest 

platform yields reads longer up to 50~100bp) and extreme high throughput (around 

700MB to 1GB per lane). 

Basic analysis of ChIP-Seq results is relatively straightforward. By mapping all raw 

reads to the reference genome, the uniquely mapped reads are retained. Using 

uniquely mapped reads from the ChIP profile and a control profile which is usually 

created from input DNA, peak calling generates a list of enriched regions (peaks). For 

ChIP-Seq, the most common follow-up analysis is focusing on discovery of binding 

sequence motifs which can represent transcription factor binding sites 

(TFBSs).This de novo motif finding corresponds to identifying over-represented 

subsequence in bound regions to a background frequency model. 

Here I introduce some of the popular methods which lead to a better understanding of 

discovery motif bound with TFBS according to ChIP-Seq bioinformatics analysis. 
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Figure 2 Flow chart of the central steps in the ChIP-seq procedure. By mapping the raw 

sequence reads to reference genome, the unique mapped reads were remained for further 

analysis; The significant enriched regions were detected from ChIP data compared to the 

control data; The binding motifs then were identified by over-represented subsequence in 

peak regions. 

 

Alignment of Sequence Reads 

The first step of ChIP-Seq data analysis is to map reads to a reference genome. 

Alignment of reads should allow for a small number of mismatches (2~3 mismatches) 

due to sequencing errors, SNPs and indels or the difference between the genome of 

interest and the reference genome. 

Here I describe an algorithmic approach based on spaced seed alignment. Several 

associated software programs such as MAQ [4], Eland [5] and RMAP [6] apply 

spaced seeding techniques, requiring one or several hits per read.  

First, all reads are loaded into memory and the first 28 bp of reads were indexed, so it 

is able to guarantee to find no more than 2-mismatch seed hits.  
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Second, a mapping quality for each alignment is calculated by measuring the 

probability of mapping error. Mapping quality is given by the Phred-scaled 

probability [7] that a read alignment maybe wrong. Given L-long reference x and l-

long read z, assume that sequencing errors are independent at different sites of the 

read, the probability p(z|x, u)  of z coming from the position u equals the product of 

the error probabilities of the mismatched bases at the aligned position. For example, if 

read z mapped to position u has two mismatches: one with phred base quality 10 and 

the other with 30, then   p(z|x, u) =10-(10+30)/10=0.0001. 

Assuming a uniform prior distribution p(u|x) , the Bayesian formula is applied to 

calculate the posterior probability 𝑃𝑃𝑠𝑠(𝑢𝑢|𝑥𝑥, 𝑧𝑧)  , and the mapping quality is, 

𝑄𝑄𝑠𝑠(𝑢𝑢|𝑥𝑥, 𝑧𝑧) = −10𝑙𝑙𝑙𝑙𝑙𝑙10 [1− 𝑃𝑃𝑠𝑠(𝑢𝑢|𝑥𝑥, 𝑧𝑧)] 

Third, perfect match reads are reported as “unique”, and by also placing the repetitive 

reads randomly amongst equally good alternatives with a low mapping score, instead 

of discarding them. This avoids any ambiguity and provides more data for the 

subsequent analysis. 

 

 

Identification of enriched regions 

After mapping sequence reads to the reference genome, the next step is to identify 

regions that are significantly enriched in the ChIP sample when compared to the 

control. Here, I describe an algorithmic approach of modelling the shift size of 

sequence reads and using a dynamic parameter to detect peaks (the signals of putative 

protein binding) from ChIP-seq data. 

ChIP-Seq reads are enriched near TFBSs. Therefore, by using mapped reads, a 

reasonable model can be built to detect peaks. In this approach [8], the tags belonging 

to a forward/reverse strand are shifted ½ of fragment size right or left. It also uses a 

dynamic Poisson distribution to effectively capture local biases in the genome. 
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Through modelling the shift size of reads and detecting the significant enriched DNA 

regions, the peaks can be found. 

 

Peak shift estimation 

DNA fragments from a ChIP experiment are sequenced from the 5’ end. Therefore, 

the alignment of these reads to the genome forms two peaks (one on each strand) that 

flank the binding location of the protein of interest. The binding site can then be 

interpolated between these peaks (Figure 3). 

This algorithm requires a reference genome size (gsize), a sonication size (bandwidth) 

and a high-confidence fold-enrichment (mfold).  The mfold parameter is used to select 

the regions within MFOLD range of high-confidence enrichment ratio against 

background to build model. This parameter works by assuming totally N uniquely 

mapped reads are obtained in a ChIP sample. The reference genome is scanned using 

a 2*bandwidth window, thus a N∗(2∗bandwidth )
gsize

number of reads is expected to be seen 

in a random scan window. If a scan window has T reads inside, then the fold 

enrichment is computed as T
N∗(2∗bandwidth )/gsize

 . If the fold enrichment is larger than 

the specified mfold, this window will be termed ‘significant’.  

Through scanning of the whole genome, the high-quality enriched regions can be 

found. After the scan, 1000 samples of these regions are randomly selected, their 

forward and reverse strand reads separated, and aligned to the genome (Figure 3). The 

distance between the summits of the forward strand and reverse strand peaks is 

defined as ‘d’. All the reads are shifted by d/2 toward the 3’ ends to the mostly likely 

transcription factor binding sites. 
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Figure 3 Sequenced short reads from ChIP-Seq experiments are first mapped onto the 

reference genome. Reads are sequenced from both ends of DNA fragments. Therefore, when 

surrounding a TFBS, some reads aligned with forward strands form a peak upstream of TFBS, 

and some reads aligned with reverse strands form a peak downstream of TFBS. The distance 

between the summits of these two peaks is defined as ‘d’. Shifted all reads by d/2, a new peak 

with potential binding sites was generated. 

 

Peak detection 

After shifting all reads by d/2, this algorithm scans 2*bandwidth windows across the 

genome to find potential peaks with a significant enrichment. With the current 

genome coverage of most ChIP-Seq experiments, reads distribution along the genome 

could be modelled by a Poisson distribution. λBG is a parameter of this model, which 

is equal to the mean and the variance of the distribution[8]. Therefore, these potential 

peaks can be detected by Poisson distribution p-value based on λBG.  

We often observe that there are tag distributions with biases (Figure 5) in control 

sample. Several sources of bias can be: local chromatin structure, DNA amplification 
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and sequencing bias or genome copy number variation [8]. Therefore, a dynamic 

parameter λlocal is used instead of λBG , λlocal = max (  λBG, [λ1k,]  λ5k,  λ10k), where  λ1k , 

λ5k  and  λ10k are λ estimated from the 1kb, 5kb or 10kb window centred at the peak 

location in the control sample, or from the ChIP-Seq sample when a control sample is 

not available (in which case λ1k is not used). When using λlocal to compute the p-value 

of each potential peaks, if the p-value of a candidate peak is above a threshold p-value 

(default 10-5), the candidate peak should be removed due to local biases; otherwise the 

candidate peaks are detected and reported. 

 

Motif Finding 

For ChIP-Seq data, the most common follow-up analysis is the discovery of binding 

sequence motifs which can represent TFBSs. Here I describe the expectation 

maximization algorithm (EM algorithm) for motif finding.  

The EM algorithm for identifying motifs (a pattern that recurs in the sequence) in an 

unaligned biopolymers was introduced by Larence and Reilly [14] as a means of 

solving a supervised motif learning problem. The EM algorithm takes as input a set of 

unaligned sequences and a motif length W and returns a probabilistic model of shared 

motif, assuming that each sequence in the dataset contains a single example of motif. 

Due to this fact, the algorithm is also called “one-occurrence-per-sequence” model or 

“one-per” model”. Before the iteration begins, the EM presents an initial guess where 

the motif appears (the starting offset) in each sample. 

It then estimates the probability that the shared motif stats in position j in sequence i 

in the dataset. These probability estimates Zij(Z is used to refer to the matrix of offset 

probabilities Zij), are then used to re-estimate the probability of letter l in column c of 

the motif mlc (m refers to the matrix of letter probabilities mij),for each letter in the 

alphabet and 1≤c≤W. The initial motif is represented by the frequencies of each base 

in each column of the site along with the frequencies of each base outside the site 

(background). 



9 

 

The expectation and maximization steps are performed consecutively to 

simultaneously estimate the probability of each possible starting point of the motif(s) 

in the sequence and discover a model of the motif until the algorithm converges as it 

is guaranteed to do [15]. The expectation step uses the proposed motif to estimate the 

probability of finding that motif at any position in each of the sequences. During the 

second step, maximization, the probabilities (from step one) can then be used to re-

estimate the proposed motif. This is done iteratively until the motif model no longer 

changes. 

The pseudo-code for the EM algorithm and the re-estimation details are described in 

[15], using the following variables 

S unaligned set of sequences  S1, S2, …, Si, …, Sn  each of length L 

W width of motif 

z matrix of probabilities that the motif starts in position j in Si 

m matrix representing the probability of character c in column k (the character c 

will be A, C, G, or T for DNA sequences or one of the 20 protein characters) 

EM (S, W) { 

      choose starting point and initial value for m 

      repeat until m stops changing { 

            computez from m  //the estimation step 

            compute m from z  //the maximization step 

      }  

      Return m, z 

} 
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The Multiple EM for Motif Elicitation (MEME) [13] algorithm enhances the basic 

EM approach to offer the following novel contributions: 

• Increased likelihood of finding globally optimal motifs. By using 

subsequences of the nucleic or amino acid sequence input as starting points, 

EM is guaranteed to find an optimal local maximum.  And, although it is not 

guaranteed, EM tends to converge to the global maximum since the 

subsequences themselves are taken from the data where the similar and 

optimal value(s) for the shared motif exist. 

• Allowance for multiple, different shared motifs to be discovered in the same 

inputted sequences.  This is achieved by probabilistically erasing shared motifs 

discovered by EM and then repeating EM to find subsequent motifs. 

The MEME algorithm was first described in [15], listed below, but has also been 

parallelized [16].  

MEME(S, W, COUNT) { 

      for i = 1 to COUNT { 

            for each subsequence in S { 

run EM for 1 iteration with starting point derived from this 

subsequence. 

choose model of shared motif with highest likelihood 

                   run EM to convergence from starting point which generated that model 

                   print converged model of shared motif 

                   erase appearances of shared motif from dataset 

            } 

     }  

}  
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Results and Discussion 

In this report, I have described methods to detect the DNA motif from ChIP-Seq. The 

most important step in motif finding is to assemble a ‘dataset’ of DNA sequences in 

which you will discover motifs. Therefore, it is critical to use all available background 

information to select the sequences that are likely to contain motifs. 

I used ChIP and input DNA datasets of human STAT1 in my project. Using the MAQ 

program and allowing a maximum of two mis-matches, 33.4% (26.7 million) of the 

ChIP reads were uniquely mapped back to the human reference genome (hg18), and 

46.4% (23.4 million) of the Input DNA reads were uniquely mapped(Table 1). 

 

Table 1 Here I summarize the results obtained from Illumina sequencing of the STAT1, and 

input DNA datasets. The total number of reads generated for each sample is divided into those 

that map uniquely in the human genome (hg18), those that map to multiple locations and 

those that do not map at all. 

The uniquely mapped reads were processed to detect significant peaks as described in 

‘Data and Methods’ section. Following MACS [8], I identified a total of 25,350 

significantlySTAT1 enriched peaks. By statistical analysis of the distribution of peaks 

in the whole genome, over 50% of STAT1 peaks were located within or close to gene 

body (up to 2kb)(Table 2), and most of them (90.6%) were found in introns. 

 

Table 2 The distribution of peaks I found in human genome.   
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In order to observe the signal against background noise, I analyzed the distribution of 

peak tags in the 2kb region upstream of the transcription start site (TSS) and the 2kb 

region downstream of the transcription end site (TES) compared to Input DNA data 

(Figure 4). I defined these regions as target regions. By scanning target regions, the 

target peaks which overlapped with target regions were marked. Both ChIP data and 

Input DNA data then were normalized to 4000bp according to mapped reads which 

were located in target peak. The average depth was then calculated for each position 

of target regions. To estimate the significant signal against background (Figure 4), a 

differential analysis was used as below, 

𝑑𝑑𝑗𝑗 =
𝑑𝑑�𝑗𝑗−𝐶𝐶ℎ𝐼𝐼𝑃𝑃 − 𝑑𝑑�𝑗𝑗−𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙

𝑑𝑑�𝑗𝑗−𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙
 

Where 𝑑𝑑�𝑗𝑗−𝐶𝐶ℎ𝐼𝐼𝑃𝑃 is the value of ChIP data depth in position j (in red); 𝑑𝑑�𝑗𝑗−𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙  is the 

value of Input DNA data depth in position j (in blue); 𝑑𝑑𝑗𝑗  is the differential value 

between ChIP data and Input DNA in position j (in green). 

 

Figure 4 ChIP profile in target regions was calculated by the reads of target peak. The target 

region was defined as the regions that contained 2k region upstream of the TSS and 2k region 

downstream of the TES. In target regions, the average alignment depth was calculated for 

each position. Y-axis represents the average of normalized depth. The distribution of ChIP 

data is in red; The input DNA data is in blue; The differential value between ChIP data and 

input DNA is in green.  
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By uploading my peak results to the University of California-Santa Cruz (UCSC) 

Genome Browser (Figure 5), the significant enriched regions can be visualized. We 

can observe that some enriched regions caused by local biases in ChIP sample were 

removed from the candidate peaks. This filter decreased false positives during peak 

calling. 

 

Figure 5 An example of two peaks of STAT1 ChIP-Seq data. The first line data is from 

control sample, and the second is from ChIP-Seq sample. Compared to the control sample, the 

region shown with blue box is not a real peak. The enrichment of this region is caused by 

local biases, whereas the regions shown with red boxes are detected peaks. 

As described in ‘data and method’, 5 motifs were obtained by using MEME (Figure 

6). MEME usually finds the most statistically significant (low E-value) motifs first. 

The E-value is an estimate of the expected number of motifs that one would find in a 

similarly sized set of random sequences. The E-value of Motif 1 was far less than 

other motifs. Therefore, I inferred that Motif 1 maybe the real binding motif of 

STAT1. For validation, I subsequently compared five motifs I discovered to known 

motifs contained in TRANSFAC [17] motif databases by using Motif Comparison 

Tool (TOMTOM). By querying database of know motifs, the results proved that 

Motif 1 is the known motif of STAT1 (Figure 7). 

Local bias 

Peak 
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Figure 6 The sequence logo of STAT1 binding motifs found through MEME analysis is 

shown. The sequence LOGO contains stacks of letters at each position in the motif bits. The 

height of the individual letters in a stack is the probability of the letter at that position 

multiplied by the total information content of the stack. The E-value is an estimate of the 

expected number of motifs that one would find in a similarly sized set of random sequences. 

The number of sites is the total number of sites in the training set where a single motif occurs. 

 

 

Figure 7 The result of TOMTOM displayed the motif of STAT1 in the TRANSFAC database 

high similar to the Motif 1 I discovered. Each entry in the table includes the database 

identifier for matching motif, its description, the p-value of the match, the overlap and offset 

between my motif and the matching motif, the strand of the matching motif, and a logogram 

of my motif and the matching motif.  
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Concerned about the possible roles for STAT1 binding Motif 1, I submitted the 

probabilities matrix of Motif 1 to Gene Ontology for Motifs (GOMO) [18] and 

obtained a list of significant GO terms [Figure 8]. The top 5 GO terms are olfactory 

receptor activity, sensory perception of smell, platelet alpha granule, cytokine activity 

and response to external stimulus, which are similar with the known gene ontology of 

STAT1. 

 

 

Figure 8 GOMO returns a list of GO-terms that are significantly associated with target genes 

of the motif, sorted by q-value (minimum false discovery rate).BP stands for biological 

process, CC stands for cellular component and MF stands for molecular function. 

 

I noticed that the Motif 1 does not match perfectly with STAT1 binding motif in 

TRANSFAC on the leftmost bases and rightmost bases. As mentioned previously, this 

can be due to (1) the presence of local bias noise which should be removed; (2) peak 

calling methods not yet fully developed; therefore, with further analysis, I would like 

to develop a new method on discovery of DNA motifs, which is to be improved with 

the following ideas: 

1) Keep the sequences which are likely to contain motifs as short as possible. 

Remove sequences that are unlikely to contain any motifs. 

2) Different classes of algorithms have different strengths and weaknesses; 

therefore it is helpful to run more motif discovery software with different 

algorithms on the sequence set.  

3) Besides extracting the most information from ChIP-Seq data, integrative 

analysis with RNA-Seq data will be essential. The RNA-Seq transcribed 
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fragments are identified from RNA-Seq data. The regions can then be 

analyzed to identify motifs as well as peak regions. 
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Dataset and Methods 

ChIP-Seq dataset 

The ChIP-Seq data of STAT1 I used is provided by Rozowsky et al. Nat 

Biotechnol.2009 [19] and is publicly available (www.camda2009.org). They 

generated a deeply sequenced ChIP-Seq datasets for antibody against human STAT1 

performed in the HeLa S3 cell line. STAT1 is a member of the Signal Transducers 

and Activators of Transcription family of transcription factors. STAT1 is involved in 

up-regulating genes due to a signal by either type I or type II interferons. 

 

Mapping sequence reads  

For the human ChIP-Seq and control datasets, I aligned the sequence reads against the 

human genome (version hg18) using MAQ with 2bp mismatches allowed and retained 

uniquely mapped reads for further analysis. The reference genome obtained from 

UCSC Genome Browser. 

 

Calling peak 

To identify significant STAT1-bound regions in the ChIP data, I used the MACS 

software with the default parameters. These peaks were reported with p-value and 

summit of each peak. Since MACS merge overlapping areas of enrichment, the 

resulting peaks tend to be much larger than the actual binding sites. To enhance the 

quality of the motif analysis, here I defined the peak sequences as the 200-bp genomic 

regions centered on the summit of candidate peaks. This is usually a reasonable 

process for analyzing TFBS, because binding motifs are most likely to appear at or 

near peak summit regions. 

 

http://www.camda2009.org/
http://en.wikipedia.org/wiki/STAT_protein
http://en.wikipedia.org/wiki/STAT_protein
http://en.wikipedia.org/wiki/STAT_protein
http://en.wikipedia.org/wiki/Transcription_factor
http://en.wikipedia.org/wiki/Interferon_type_I
http://en.wikipedia.org/wiki/Interferon_type_II
http://en.wikipedia.org/wiki/Interferons
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Detecting motif  

I used MEME for motif analysis. The input for MEME is a file in FASTA format 

containing the peak sequences. The MEME algorithm run time is quadratic with 

respect to the number of characters of input datasets. Due to time limitation for this 

project, I did not use all peaks sequences as input file. I sorted the sequence peaks 

according to their ascending p-value. I then chose sequences of top 500 sequence 

peaks as my input sequences. MEME was parameterized to find 5 motifs of lengths 5-

20. Subsequently, I compared the motifs I discovered to known motifs contained in 

TRANSFAC motif databases by using TOMTOM (Motif Comparison Tool) and 

identified possible roles for STAT1 binding motif by using GOMO (Gene Ontology 

for Motifs), a web-server and database provided by MEME suite tool. GOMO used 

the STAT1 binding motif to find putative target genes and analyzed their associated 

GO terms. A list of significant GO terms then was reported. 

 

  



19 

 

Reference 

1. Latchman DS: Eukaryotic Transcription Factors. fifth edition. Elsevier Ltd; 

(2008). 

2. Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. Genome-wide mapping 

of in vivo protein-DNA interactions. Science 316, 1497–1502. (2007). 

3. Hoffman BG et al. Genome-wide identification of DNA–protein interactions using 

chromatin immunoprecipitation coupled with flow cell sequencing. Journal of 

Endocrinology 201, 1–13. DOI: 10.1677/JOE-08-0526. (2009). 

4. Li, H., J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling 

variants using mapping quality scores. Genome Res. 18:1851–1858. (2008). 

5. Cox, A. J. Ultra high throughput alignment of short sequence tags. Unpublished. 
(2007). 

6. Smith, A. D., Xuan, Z., and Zhang, M. Q. Using quality scores and longer reads 
improves accuracy of Solexa read mapping. BMC Bioinformatics, 9:128. (2008). 

7. Ewing, B. and Green, P. Base-calling of automated sequencer traces using phred. 
ii. Error probabilities. Genome Res. 8: 186–194. (1998) 

8. Zhang et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biology vol. 9 

(9) pp. R137. (2008). 

9. Sinha, S. and Tompa, M. Discovery of Novel Transcription Factor Binding Sites by 

Statistical Overrepresentation. Nucleic Acids Research, vol. 30, no. 24, December 

2002, 5549-5560. (2002). 

10. Pesole G, Prunella N, Liuni S, et al. Wordup: An Efficient Algorithm for 

Discovering Statistically Significant Patterns in DNA Sequence. Nucleic Acids Res. 

20( 11) : 2871- 2875.  (1992). 



20 

 

11. MatthieuDefrance, et al. Using RSAT oligo-analysis and dyad-analysis tools to 

discover regulatory signals in nucleic sequences. Nature protocols, Vol. 3, No. 10. pp. 

1589-1603. (2008). 

12. Tompa M: An exact method for finding short motifs in sequences, with application 

to the ribosome binding site problem. Proceedings of the Seventh International 

Conference on Intelligent Systems on Molecular Biology, 262-271. (1999) 

13. Timothy L. Bailey and Charles Elkan.Fitting a mixture model by expectation 

maximization to discover motifs in biopolymers. Proceedings of the Second 

International Conference on Intelligent Systems for Molecular Biology, pp. 28-36, 

AAAI Press, Menlo Park, California. (1994). 

14. Lawrence CE, Reilly AA: An expectation maximization (EM) algorithm for the 

identification and characterization of common sites in unaligned biopolymer 

sequences. Proteins, 7:41-51. (1990). 

15. Bailey, T. L, and Elkan, C. Unsupervised Learning of Multiple Motifs in 

Biopolymers Using Expectation Maximization.  Machine Learning Journal, 21, 51-

83.(1995). 

16. Grundy, W. N., Baily, T. L., and Elkan, C. P.ParaMEME: A Parallel 

Implementation and a Web Interface for a DNA and Protein Motif Discovery Tool. 

Computer Applications in the Biological Sciences (CABIOS), Vol. 12, pp. 303-310. 

(1996). 

17. Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from 

patterns to profiles. Nucleic Acids Res;31:374-8. (2003). 

18. Mikael Boden and Timothy L. Bailey, Associating transcription factor binding 

site motifs with target Go terms and target genes. Nucl. Acids Res, 36, 4108-4117. 

(2008). 

19. Rozowsky, J. et al. PeakSeq enables systematic scoring of ChIP-seq experiments 

relative to controls. Nat. Biotechnol. 27, 66–75 (2009). 


	Introduction
	Processing and analyzing ChIP-Seq
	Alignment of Sequence Reads
	Identification of enriched regions
	Peak shift estimation
	Peak detection

	Motif Finding

	Results and Discussion
	Dataset and Methods
	Reference

