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“Data, the oil of the digital era”

“A new commodity spawns a lucrative,

fast-growing industry [...]. A century ago, the s

resource in question was oil. Now similar DR || ]

concerns are being raised by the giants that | " i B

deal in data, the oil of the digital era. These QimryL i 1 ':
[

titans — Alphabet (Google’s parent company),
Amazon, Apple, Facebook and Microsoft — _
look unstoppable. They are the five most ‘ g e R
valuable listed firms in the world.”

-The Economist, May 6th, 2017



#1 Big Data
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From data to wisdom - inference

e Inference is reasoning guided by data
e Peirce distinguishes three kinds of inference
e Deduction
o Logic, symbolic manipulation
o No uncertainty, deterministic
e Induction
o Estimate the parameters of a model from
data, under uncertainty
e Abduction
o Choose any of the models that fit the
data, under uncertainty

Charles Sanders Peirce (1839-1914)



The abstraction explosion

Year Model

2004 Cyc knowledge management, 6 million FOPC/CycL propositions
2012 34.000 lines of Python/Cuda for Imagenet (Krizhevsky et al.)
2013 1.571 lines of Lua to play Atari games

2017 196 lines of Keras to implement Deep Dream

2018 <100 lines of Keras for research paper level results

Source: Monica Anderson, Syntience Inc.




Ahstraction is power

“Abstraction, difficult as it is, is the source of
practical power. A financier, whose dealings
with the world are more abstract than those of
any other ‘practical’ person, is also more
powerful than any other practical person.”

— Bertrand Russell, British philosopher,
logician and social critic (1872-1970)




#2 Deep Learning

e Roots: the perceptron
o Frank Rosenblatt, 1957
e Deep neural networks, 2012
o Neural network revival
o GPUs
o Large data sets
o Algorithms & software
e Problems
o Black box
o Overfitting, uncertainties
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The humble digital neuron...

e Calculates the weighted sum of the inputs
e Applies a non-linear function to the sum
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#3 Probabilistic programming

Probabilistic
Programming

Openbox Models

Blackbox Inference Engine

Data ﬁ
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How I got involved - Mocapy

Mocapy (2006) is a PP package for

sequences and directional statistics.

Probabilistic models of protein
structure

o Protein structure prediction

m PLoS Comp. Biol.,, 2006
m  PNAS, 2008, 2014

Inference engine

o Gibbs sampling

o Stochastic EM
Such models are more than within
the scope of general PP software

in Structural

Bioinformatics
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e STAN (2011)
o Hamiltonian Monte Carlo
o Columbia University

Some PP packages and their roots
e pyMC3
o Academic, Quantopian

4JPYMC3
o Theano (U. Montréal)

e Edward Edward

o Google/Tensorflow (Google)
e Pyro
o Uber/PyTorch (Facebook)
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Theano, PyTorch & Tensorflow

Theano (U. Montréal) .

o Discontinued PYTO6RCH
Tensorflow (Google)

o Python API based on Numpy
PyTorch (Facebook)
Tools for machine learning
Similar scope, interface and goal

o Mathematical computing

o Automatic differentiation

o GPU support

theano

TensorFlow

Canned Estimators

. Keras
E
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Deduction - Automatic differentiation

e The key development that makes probabilistic programming possible
o Augment the algebra of real numbers and obtain a new arithmetic
e Not symbolic differentiation, nor numerical differentiation
o Large expressions/round off errors

Automatic
differentiation
£(x) {...}; [ at (... 0
human ,
programmer !
= f X)) === e e e e e e e e e - - - > /: f, X
y ( ) symbolic differentiation Y ( )

(human/computer) “



The Bayesian calculus

For inference and abduction we need a
calculus of uncertainty
This is provided by Bayesian statistics
o Thomas Bayes (1701-1761)
o Pierre-Simon Laplace (1749-1827)
Probability is a measure of belief
o Alternatively, probability can be
seen as a frequency of occurrence
o Predominant until end of 20th c.
Core idea: prior belief is updated in the
light of new data.
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The Bayesian calculus

e Forinference and abduction we need a
calculus of uncertainty
e This is provided by Bayesian statistics

—TFhomasBayes 170+-1764 posterior =

likelihood X prior

o Pierre-Simon Laplace (1749-1827) gvidence
e Probability is a measure of belief 01d p(d | 0)n(0)
o Alternatively, probability can be p(0 | d) = p(d)

seen as a frequency of occurrence
o Predominant until end of 20th c.
e Core idea: prior belief is updated in the
light of new data.



The theory that would not die

Frequentist methods reigned supreme
until the end of the 20th century
o |deological considerations (Fisher)
o Analytic convenience
Due to fast computers, the Bayesian
view has now largely taken over
The Bayesian calculus is now the
paradigm of choice in machine learning
o Yarin Gal (2015): dropout as
approximate Bayesian inference in
deep Gaussian processes

the theory @
< that would

il not die w

how bayes” rule cracked
*=<. the enigma code,
hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy
sharon bertsch mcgrayne
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Bayesian linear model in pyMG3

e A simple linear model

e Data set of (x,y) values
e Parameters
o a=2,b=3, o=1 y
e Bayesian inference using sampling
e Priors/Likelihood

(=] Lol ~N w L v o ~

a~ N(alO0,1) @ oz o+ ds o8 10
y~N(y|po)
b~ N(b|O0,1)
pw=a+ bz
O'NN+(O,1)
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Inference by sampling

e Direct calculation of the posterior a = p(r — z’') = min (1, Z((Z'))(f((f"ffc')))
distribution is typically intractable.
e Therefore, the posterior is typically s Q,/‘“i“*" SRy %\
approximated by sampling. We need: \ @ U
o A starting point b‘d/ \\ g}o\ /9 880
o A proposal distribution g(x’lx) \/ & ¢0 Jooo
o A an acceptance/rejection criterion O Q / OO
e Fast computers led to the resurrection ¥ O
of Bayesian methods in the 20th et ) diseiution FEOL)
century. lllustration of Markov chain Monte

Carlo sampling (Metropolis & Hastings

Picture: Lee, Sung & Choi, 2015 1953).
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Hamiltonian Monte Carlo

e Proposal from molecular dynamics
o Accept/reject as before
e Physics: position 0
o Momentum p
o Potential energy Epot(Q)
o Kinetic energy E,__(p)
e Statistics: parameters 0
o Auxiliary momentum p
Epot(Q) = -log p(0ld)
o E. (p)™ N(O,)

Pictures: Mathieu Lé
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Sampling goes NUTS

e Hamiltonian MC is difficult to automate due to two
hyperparameters needed for integration with the
Leapfrog algorithm

o  Number of steps L
o Step size €
e This was fully automated in 2011 by Hoffman &
Gelman
o No U-turn Sampling (NUTS)
o Do 2'leapfrog steps for step i
o Choose random forward or backward direction
in time at each step
o Stop when particle retraces its steps (U-turn)
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Bayesian deep learning

Deep learning

©)

O

O

+ Fast enough for large datasets
- Point estimates, uncertainty
- Overfitting

Bayesian deep learning

©)

©)
©)
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+ Priors avoid overfitting

+ Modelling of uncertainties
- Computational efficiency

- Big data

Picture: Thomas Wiecki, pyMC3
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A Bayesian decision boundary of a neural network,

estimated with pyMC3



Variational Bayes to the rescue

e Sampling - even NUTS - is slow
e Sampling does not scale to
massive data sets
e Variational Bayes turns inference
into an optimization problem
o Chose an approximation q(0)
of the posterior p(01d)
o Find 0 that minimizes the
Kullback-Leibler divergence
between q(0) and p(01d)
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ADVI and Mini-batch ADVI

e Automatic differentiation variational
inference (ADVI)
o Automated variational Bayes
e Mini-batch ADVI
o Train on batches of data
o The batches are used to estimate a
stochastic expectation of the gradient
o Much faster, for large data sets
o ..and faster convergence
e Towards Bayesian Deep Learning and Big
Data
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Protein structure alignment

e A classic bioinformatics application
e Normally done by minimizing the sum of
the squared distances between the atoms
o Singular value decomposition
e Alternative: a probabilistic model inspired
by Douglas Theobald’s THESEUS
program
o Full Bayesian posterior
o Realistic error model based on the
Matrix Normal distribution.
o Closer to biological reality
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Protein structure alignment - the model

o A of

(o)

R

M ~ RandomWalk(d = 3.8, n)
My < center(M)

t1 ~ N(07 I3)

tg ~ N(O) I3)

q ~ UnitQuaternion()

R + RotationMatrix(q)

o r N+ (0, 1)

U — oL

V «+ I3

X1~ MN(My+t1,U,V)
Xy ~ MN (RMo + t3,U, V)
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Protein structure alignment - the model

ozo

R

M ~ RandomWalk(d = 3.8, n)
My < center(M)

tl Pt N(O, .[3)

tg ~ N(Oa I3)

q ~ UnitQuaternion()

R + RotationMatrix(q)

g re N+ (O, 1)

U — oL

V «+ I3

Xy~ MN(My+t1,U, V)
Xy ~ MN(RMo + t2,U, V)
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Gonclusions

Probabilistic Programming is the next big thing after
Big Data and Deep Learning
Complex probabilistic reasoning has now become
accessible and computationally affordable

o NUTS sampling

o Variational Bayes (ADVI)

o Batch variational Bayes (Mini-batch ADVI)

o This is a very active field!
In the future, we will see the emergence of Deep
Probabilistic Programming, featuring Deep Learning
components combined with classic Bayesian models
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Workshop

Install pyMC3 (assuming Anaconda Python):
conda install pymc3
Jupyter notebook files:

git clone https://github.com/thamelry/ppl-arhus
Run anaconda-navigator, start Jupyter and open files

View static Jupyter notebook files:

https://nbviewer.jupyter.org/
Type “thamelry/ppl-arhus” in box and press Go
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