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Abstract

We consider the statistical analysis of population structure using genetic data. We show how the two most widely used
approaches to modeling population structure, admixture-based models and principal components analysis (PCA), can be
viewed within a single unifying framework of matrix factorization. Specifically, they can both be interpreted as
approximating an observed genotype matrix by a product of two lower-rank matrices, but with different constraints or prior
distributions on these lower-rank matrices. This opens the door to a large range of possible approaches to analyzing
population structure, by considering other constraints or priors. In this paper, we introduce one such novel approach, based
on sparse factor analysis (SFA). We investigate the effects of the different types of constraint in several real and simulated
data sets. We find that SFA produces similar results to admixture-based models when the samples are descended from a few
well-differentiated ancestral populations and can recapitulate the results of PCA when the population structure is more
‘‘continuous,’’ as in isolation-by-distance models.
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Introduction

The problem of analyzing the structure of natural populations

arises in many contexts, and has attracted considerable attention.

For example, methods for analyzing population structure have

been used in studies of human history [1,2], conservation genetics

[3], domestication events [4], and to correct for cryptic population

stratification in genetic association studies [5–7].

Two types of methods for analyzing population structure have

become widely used: methods based on admixture models, such as

those implemented in the software packages structure [6,8], FRAPPE

[9], SABER [10], and ADMIXTURE [11]; and principal components

analysis (e.g., [7,12]), such as is implemented in the program

SmartPCA [13]. In admixture-based models each individual is

assumed to have inherited some proportion of its ancestry from each

of K distinct populations. These proportions are known as the

admixture proportions of each individual, and a key goal of these methods

is to estimate these proportions and the allele frequencies of each

population. Principal components analysis (PCA) can be thought of as

projecting the individuals into a low-dimensional subspace in such a

way that the locations of individuals in the projected space reflects the

genetic similarities among them. For example, when the population

structure conforms to a simple isolation-by-distance model with

homogeneous migration then PCA effectively recapitulates the

geographic locations of individuals [14,15].

At first sight, these two different approaches to analysis of

population structure appear to have little in common. For example,

admixture-based methods involve an explicit model, whereas PCA,

as usually described, does not. In this paper we describe how these

approaches can be viewed within a single unifying framework.

Specifically, they are both examples of low-rank matrix factorization

with different constraints on the factorized matrices (e.g., [16]).

Motivated by this general view we also consider a new method for

analyzing population structure, sparse factor analysis (SFA), which

lies in this same model class. We perform parameter estimation for

SFA using a version of the expectation maximization (EM)

algorithm, enabling application of SFA to genome-wide data.

We compare and contrast these three different methods on a

range of real data and simulated examples. We find that SFA

produces similar results to admixture-based models when the data

conform to discrete and admixed populations, and can produce

results similar to PCA when allele frequencies vary continuously

with geography. Placing these different methods into a single

framework also greatly aids comparisons among the methods, and

provides helpful insights into why they may produce different

results in practical applications.

Population structure via low-rank matrix factorization
In this section, we describe how admixture-based models and

PCA can be viewed as factorizing an observed genotype matrix G
into a product of two low-rank matrices. We assume that G
contains the genotypes of n individuals at p SNPs with genotypes

coded as f0, 1, 2g copies of a reference allele. Then both

admixture-based models and PCA can be framed as models in

which:

E½G�~LF , ð1Þ

or, equivalently,
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E½Gi,j �~
XK

k~1

Li,kFk,j , ð2Þ

where L is a n|K matrix and F is a K|p matrix, where K is

typically small (Figure 1) (see Table 1 for a complete list of terms

and constraints). In this framework, the primary difference

between the approaches lies in the constraints or prior distribu-

tions placed on matrices L and F as follows.

Admixture-based models. Under admixture-based models

(as found in, e.g., structure [17] and related work), explicitly

marginalizing the multinomial latent variables representing

individual- and SNP-specific ancestry, Gi,j is assumed to be

distributed as binomial (2, ri,j), with ri,j~
PK

k~1 Li,kPk,j , where

Li,k is the admixture proportion of individual i in population k

and Pk,j is the allele frequency of the reference allele in population

k. It follows that E½Gi,j �~
PK

k~1 Li,k2Pk,j , as in Equation 2 above

with F~2P. Thus, admixture-based models can be viewed as

performing the matrix factorization (Equation 1) with the

following constraints on L and F : the elements of L are

constrained to be non-negative with each column summing to

one; the elements of F are constrained to lie within ½0, 2�. In

Bayesian applications of this model, priors are placed on L and P,

which can be thought of as imposing additional ‘‘soft’’ constraints

on the matrices.

Principal component analysis. PCA can be derived by

considering the model Gi,j*N ((LF)i,j ,y
{1). Specifically, consider

maximizing the likelihood of this model with respect to parameters

(L, F , y), subject to the constraints: i) the K columns of L are

orthogonal (so LTL is diagonal); ii) the K rows of F are orthonormal

(so FFT~I ). Then the columns of L and rows of F give the principal

components (PCs) and the corresponding PC loadings. To see this,

consider performing the constrained optimization via singular value

decomposition (SVD) of G: if G~USVT is the SVD for G, then

setting L to the first K columns of U and F to the first K rows of

SVT satisfies the constraints and maximizes the likelihood (by stan-

dard results on optimality of the SVD; e.g., [18]). However, PCA can

be performed in exactly the same way, and so the result follows.

Placing these two approaches to the analysis of population

structure within a single framework helps illuminate some of their

similarities and differences. For example, we can view both methods

as attempting to approximate each individual’s genotype vector by a

linear combination of allele frequencies (Figure 2 illustrates different

but equivalent linear combinations), but the admixture-based

models are more restrictive because they insist on this linear

combination being a convex combination (the admixture proportions

must be non-negative and sum to one). This restriction makes sense

if the study individuals conform closely to this assumption – that is, if

each individual is indeed an admixture of a small number of

ancestral populations – and in this case imposing this restriction

leads to improved interpretability (each factor in F corresponds to

the allele frequencies of an ancestral population). On the other

hand, where the study individuals do not conform closely to this

assumption, such as in isolation-by-distance models considered

later, the less restrictive approach of PCA may enable the

representation of a wider range of underlying structure.

Furthermore, viewing both methods within the framework of

matrix factorization immediately suggests many alternative ap-

proaches to analyzing population structure. By modifying the

constraints or priors on the matrices, one may hope to develop

better methods for different latent structures. To illustrate this

possibility, we consider here a version of sparse factor analysis (SFA)

where the key idea is to encourage the L matrix to be sparse,

attempting to represent each individual as a linear combination of a

small number of underlying factors, without constraints (e.g.,

orthogonality) on the factors. Intuitively, sparsity can lead to more

interpretable results than PCA, while the use of general linear

combinations (and not only convex combinations) maintains

flexibility in capturing a wider range of underlying structures. There

are several different approaches to SFA (e.g., [19–22]); here we use a

novel approach described below. Other possible methods for matrix

factorization that may be appropriate for this problem include non-

negative matrix factorization [23], and sparse PCA (e.g., [24]). We

summarize results from these methods in our Discussion.

Sparse factor analysis. We now briefly describe our novel

approach to SFA; see Methods for further details. The SFA model

assumes Gi,j*N ((LF )i,j , y{1
i ), and encourages sparsity in the L

matrix by putting a prior on its elements (thus sparsity is a ‘‘soft’’

constraint, rather than a hard requirement). Specifically we use the

automatic relevance determination (ARD) prior [25–27], which assumes

Li,k*N (0, s2
i,k) where the variances s2

i,k are hyper-parameters that

are estimated by maximum likelihood. If the data are consistent

with a small absolute value of Li,k then s2
i,k will be estimated to be

small, which results in strong shrinkage of Li,k towards zero,

inducing sparsity where it is consistent with the data. To ensure

identifiability we constrain the rows of F to have unit variance,

which effectively determines the scale of the columns of S; other

than this we place no orthogonality constraints or prior distributions

on F (unlike most applications of factor analysis; see also [28]).

Results

We use simulated and real human genotype data to com-

pare and contrast SFA, PCA, and an admixture-based model,

Author Summary

Two different approaches have become widely used in the
analysis of population structure: admixture-based models
and principal components analysis (PCA). In admixture-
based models each individual is assumed to have inherited
some proportion of its ancestry from one of several
distinct populations. PCA projects the individuals into a
low-dimensional subspace. On the face of it, these
methods seem to have little in common. Here we show
how in fact both of these methods can be viewed within a
single unifying framework. This viewpoint should help
practitioners to better interpret and contrast the results
from these methods in real data applications. It also
provides a springboard to the development of novel
approaches to this problem. We introduce one such novel
approach, based on sparse factor analysis, which has
elements in common with both admixture-based models
and PCA. As we illustrate here, in some settings sparse
factor analysis may provide more interpretable results than
either admixture-based models or PCA.

Figure 1. Low-dimensional matrix factorization via factor
analysis. Each matrix in Equation 1 is illustrated by a blue rectangle
and labeled. As in Equation 2, a single element of genotype matrix G,
Gi,j is shown in red, and is computed from the product of the
appropriate factor loading and factor vectors plus the corresponding
random error term (all highlighted in red).
doi:10.1371/journal.pgen.1001117.g001

Population Structure Analysis: A Unified Framework
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ADMIXTURE [11]. (admixture typically produces results that are

qualitatively similar to the results from structure, but is computa-

tionally more convenient for large data sets.) In particular, we will

compare the matrices L and F produced by each method (see

above) in a variety of settings. For consistency of terminology we

will refer to the columns of L as the loadings and the rows of F as

the factors for each method. Because each method scales the

absolute values of the factors (and loadings) in different ways, the

absolute values of the factors (and loadings) are not comparable

across methods, but the relative values are. Thus, when looking at

the figures to follow, differences in the scales of the axes for

different methods are irrelevant and should be ignored. A

summary of the results with simple interpretations is in Table 2.

For PCA we follow the common practice (e.g., as in SmartPCA

[13]) of first mean-centering the columns of G and standardizing

them to have unit variance before applying PCA. This slightly

complicates comparisons across methods because, formally, we are

using PCA to factorize a different matrix than the other two

methods. However, the results of PCA on the standardized matrix

actually imply a factorization of the original matrix, but with one

additional factor and corresponding loading. Specifically, the

additional factor corresponds to the vector of genotype means and

the additional loading corresponds to a vector of ones (see Text

S1). To aid comparisons among the methods we explicitly include

this additional factor and loading in the figures and discussions.

Discrete and admixed populations
For simplicity we begin by applying the methods to a small data

set of 1859 SNPs typed on 210 unrelated HapMap individuals: 60
Europeans, 60 Africans, and 90 Chinese and Japanese (data from

[29]). In these data, the three continental groups are well

separated, making interpretation of the results relatively straight-

forward and selection of an appropriate number of factors simple.

(We discuss the issue of selecting an appropriate number of factors

later.) We ran SFA and ADMIXTURE with three factors; since both of

these methods involve a numerical optimization we ran each 10
times, using 10 different random starting points, and in each case

the results were effectively identical across runs.

Figure 3 compares the loadings from SFA and ADMIXTURE with

the first three PCA loadings. All three methods clearly separate out

the three groups, but SFA and ADMIXTURE produce qualitatively

different results from PCA. In particular, in SFA and ADMIXTURE,

each individual has appreciable loading on only one of the three

factors; from this we infer that the three corresponding factors

each represent the allele frequencies of a single continental group.

In contrast, in PCA, each individual has appreciable loading on all

three factors, and the factors themselves do not have such a

straightforward interpretation.

In some ways the different representations obtained by SFA,

PCA, and ADMIXTURE are equivalent: the resulting matrix product,

LF , from each method is essentially identical (not shown).

However, in this case we view the results of SFA and ADMIXTURE

as more easily interpretable. Specifically, the three SFA and

ADMIXTURE factors correspond to the Asian, African, and

European allele frequencies, respectively. In contrast, the first

PCA factor corresponds to the overall mean allele frequency, and

subsequent factors correspond to other linear combinations of the

allele frequencies in each group. These differences are driven by

the different constraints on the L and F matrices, not by one

factorization fitting the data better. Note that, although PCA is

forced into using the mean allele frequencies as its first factor by

our following the common practice of applying it to the

standardized genotype matrix with the genotype means removed,

in this case PCA produces almost identical results when applied to

the original genotype matrix (results not shown).

One consequence of SFA and ADMIXTURE factors corresponding

to individual group frequencies is that their results are more robust

to the number of individuals included from each group. For

example, when we removed half of the Africans from the sample

and reran the methods, the results from SFA and ADMIXTURE were

Table 1. Relationship of terms in PCA, SFA, and admixture-based models.

PCA SFA Admixture-based model

Gi,j name genotype matrix genotype matrix genotype matrix

constraints none none non-negative, integer valued

Li,
: name PCA loadings factor loadings admixture proportions for individual i

constraints orthogonal none non-negative, sum to one

F:,j name PCA factors factors twice mean allele frequencies for locus j

constraints orthonormal variance is one non-negative, in range ½0, 2�

Y{1
i

name residual variance residual variance residual variance

constraints same for all i, j one for each i y{1
i,j ~2(Li,

:F:,j )(1{Li,
:F:,j )

doi:10.1371/journal.pgen.1001117.t001

Figure 2. Illustration of two different ways that African and
European individuals could be represented. In the first (sparse)
representation in the first row, the factors (shown in red) each represent
the mean allele frequencies for either the African population (fAF ) or
the European population (fEU ); this lends to sparse loadings (shown in
blue) for each individual, since the African individuals are only loaded
on the factor representing the African population, and likewise for the
European individuals. In the second (non-sparse) representation in the
second row, each factor is a combination of fAF and fEU , and each
individual is loaded onto both factors. Note that the representations are
equivalent by the equations under the table. Whereas SFA and
admixture-based models tend to choose the first representation
because of the sparse priors and implicit regularization, PCA tends
towards the second representation (although the actual factors depend
on other features of the data such as sample sizes of both groups).
doi:10.1371/journal.pgen.1001117.g002

Population Structure Analysis: A Unified Framework
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essentially unchanged, whereas PCA results changed more

appreciably (Figure S1). The intuition here is that, for SFA and

ADMIXTURE, removing some African individuals has only a small

effect on the factor corresponding to Africans (because the sample

African allele frequencies change slightly) and a negligible effect on

the factors corresponding to the European and Asian individuals.

These small changes in the factors translate into correspondingly

small changes in the loadings for each remaining individual. In

contrast, removing half of the Africans changes all three PCA

factors: the modified sample has a different overall mean allele

frequency (first factor), and this has a cascading effect on

subsequent factors and their loadings. Indeed, the general lack

of robustness of PCA to sampling scheme is well known [30,31].

In more complex settings, we have also found SFA and

ADMIXTURE to be more robust than PCA to sampling scheme. We

illustrate this using data on 1865 SNPs typed in 1137 individuals

from 52 worldwide populations, including the HapMap individ-

uals considered above plus the Human Genome Diversity Panel

[29]. These data contain a much higher proportion of individuals

with European or Asian ancestry than the HapMap data alone.

Analyzing these data with three factors, SFA and ADMIXTURE

produce loadings for the HapMap individuals that are essentially

identical to those obtained from the analysis of the HapMap

individuals alone (Pearson correlation 0:997 for SFA; 0:97 for

ADMIXTURE). In contrast, the corresponding PCA loadings change

more substantially (correlation 0:89{0:93).

Isolation by distance models
We now compare the methods on some simple isolation-by-

distance scenarios, involving both one dimensional and two

dimensional habitats. For the 1-D habitat we assume 100 demes

equally-spaced on a line, and for the 2-D habitat we assume 225
demes arranged uniformly on a 15 by 15 square grid. In each case

demes are assumed to exchange migrants in each generation with

neighboring demes. We applied PCA, SFA and ADMIXTURE to data

from both 1-D and 2-D simulations.

In the 1-D scenario, for each method, two factors suffice to

capture the underlying geographical structure (Figure 4). Howev-

er, as for the discrete data considered above, the interpretations of

the resulting factors differ across methods. In SFA and ADMIXTURE,

the two factors represent, roughly, the allele frequencies near

either end of the line (Figure 5). The genotype of each individual

along the line is then naturally approximated by a linear

combination of these two factors, with weights determined by

their position along the line (e.g., individuals near the center of the

line have roughly equal weight on the two factors). The loadings in

SFA seem to capture the underlying structure slightly better near

either end of the line than those from ADMIXTURE, whose loadings

effectively saturate at zero on the first and last third of each line.

This may partly reflect the constraint that the ADMIXTURE loadings

must sum to one, but may also be exacerbated by the assumption

of a binomial distribution, and in particular the assumption of a

binomial variance. In contrast, in PCA, the first factor represents

the mean allele frequencies and the second represents a difference

between the allele frequencies near either end of the line. Thus

PCA represents each individual as the mean allele frequency, plus

the allele frequency difference weighted according to the location

of the individual relative to the center (the weight being zero for

individuals near the center of the line, positive at one end of the

line, and negative at the other). Again, this behavior is not solely

due to our applying PCA to the standardized genotype matrix: it

produces almost identical results when applied to the original

genotype matrix (results not shown).

For the 2-D scenario (Figure 6), the methods differ more

substantially in their results. In particular they differ in the number

of factors that they need to model the underlying geographical

structure.

Due to the convexity constraint, ADMIXTURE requires four

factors, corresponding roughly to the allele frequencies at the four

corners of the square habitat. (This result depends on the shape of

the habitat; intuitively, the convexity constraint means that

ADMIXTURE needs a factor for each extreme point of a convex

habitat.) Even then, the 2-D structure is only easy to visualize after

the four factor loadings have been mapped into two dimensions

(see Methods). As in the 1-D setting, the loadings for individuals

near the edges of the grid saturate near zero or one.

In contrast, both PCA and SFA can capture the structure using

three factors, although again they accomplish this in different

ways. PCA uses the mean allele frequencies as the first factor, and

then two factors that represent deviations from this mean in two

orthogonal directions (e.g., the diagonals of the square). As a result

Table 2. Summary of results across PCA, SFA, and admixture-based models.

PCA SFA SFAm Admixture model

HapMap mean +2 contrasts 3 pop means NR 3 pop means

1-D habitat mean +1 contrast 2 ends of line mean +1 contrast 2 ends of line

2-D habitat mean +2 contrasts 3 contrasts mean +2 contrasts 4 corners of square

The columns are the four different types of matrix factorizations we considered, and the rows are the different data sets we applied each method to that show easily
interpretable results. ‘‘NR’’ indicates that we did not run the method on those data, and a ‘–’ indicates that the results were not straightforward to describe (see Results
for details). Mean indicates that the factor is the mean allele frequencies for the complete set of individuals; contrast indicates a difference in the allele frequencies along
a geographical gradient.
doi:10.1371/journal.pgen.1001117.t002

Figure 3. Results of applying SFA, PCA, and ADMIXTURE to the
HapMap genotype data. Each plot shows the estimated loadings (y-
axis) across individuals (x-axis). SFA loadings are in the first row, PCA
loadings in the second, and ADMIXTURE loadings in the third. European
individuals are denoted with blue ‘x’s, African individuals are denoted
with red triangles, and Asian individuals are denoted with green ‘+’s. A
dashed horizontal line is at zero on the y-axis.
doi:10.1371/journal.pgen.1001117.g003

Population Structure Analysis: A Unified Framework
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the PCA loadings on the second and third factors effectively

recapitulate the geography of the space, as previously observed

[14,15,30].

The results from SFA are more complicated to describe. All

three factors represent linear combinations of the allele frequencies

on the grid, where the weights of these allele frequencies vary in a

consistent way along a particular direction. For example, in the

first row of Figure 6B, the first factor has increasing weight as one

moves from the bottom to the top of the grid. The result is that the

loadings from any two factors recapitulate a skewed version of the

geography.

In both of these settings, particularly the 2-D case, the PCA

loadings seem to have the simplest interpretation. This is because,

after subtracting the genotype mean, the 1-D structure can be

captured by a single factor, and the 2-D structure captured by two

factors, in each case yielding an attractive geographical interpre-

tation. Thus PCA’s use of the mean allele frequency as its first

factor, which hinders interpretability in the discrete case, actually

aids interpretability in settings with more continuous structure.

However, the use of the mean allele frequencies as the first

factor need not be limited to PCA. In particular it is

straightforward to modify SFA to behave in a similar way, either

by applying it to the genotype matrix with the genotype means

subtracted, or by modifying the model to include a mean term (i.e.,

a factor for which all individuals have loading one). We take the

later path here because we think there are advantages to

estimating the mean along with the factors, rather than as a

preprocessing step. We refer to this approach as SFAm; see

Methods for details. Applying SFAm to both the 1-D and 2-D

scenarios produces results that are effectively identical to PCA,

Figure 4. Estimated factor loadings from PCA, SFAm, SFA, and ADMIXTURE for the 1-D isolation-by-distance simulation. In each plot the
individuals are colored and ordered along the x-axis by location in the 1-D habitat.
doi:10.1371/journal.pgen.1001117.g004

Figure 5. Estimated scaled factors from SFA and ADMIXTURE on the
1-D isolation-by-distance simulation against the generating
allele frequencies. In each plot the factors (y-axis) are plotted against
the population allele frequencies for the closest-matching population.
The SFA factors were truncated to have a minimum of zero and scaled to
have a maximum of one. The dashed diagonal line shows y~x.
doi:10.1371/journal.pgen.1001117.g005

Population Structure Analysis: A Unified Framework
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recapitulating the geographic structure in one or two additional

factors respectively (Figure 4 and Figure 6).

In summary, the fact that the first factor in PCA represents the

mean allele frequencies is responsible both for the fact that it

produces less interpretable factors in the discrete case and more

interpretable results in the continuous case. Because SFA provides

the flexibility of choice whether or not to include the mean, it can

produce interpretable results in both scenarios. Indeed, in the

discrete case SFA effectively recapitulates the results of ADMIXTURE,

and in the continuous settings SFAm effectively recapitulates the

results of PCA.

Mixture of continuous and discrete populations. To

illustrate the potential for SFA to produce new insights in

population structure analyses, we now present a hypothetical

example for which SFA seems better suited than either ADMIXTURE

or PCA. For this simulation we generated samples from two

independent 2-D habitats, so the data have both discrete structure

(between the habitats) and continuous structure (within each

habitat) (Figure 7A).

We applied PCA, SFA and ADMIXTURE to these data. Because

SFA effectively requires three factors to capture a 2-D structure,

we expected it to require six factors to capture this mixture of two

2-D structures, and so we applied SFA with six factors. By

analogous reasoning we applied ADMIXTURE with eight factors.

Reassuringly, SFA behaved as one might predict from the

results on discrete and continuous simulations above: three factors

were used to represent each of the two 2-D habitats. In particular

SFA successfully captured the discrete structure in this case, in that

individuals from the first habitat have near-zero loadings on the

factors corresponding to the second habitat, and vice versa

(Figure 7B). These results were consistent across multiple runs

from different random starting points.

In contrast, ADMIXTURE produced less consistent results from

multiple runs (results not shown). In about 50% of runs it behaved

as we might have hoped, using four factors to represent the corners

of each of the two habitats, and effectively capturing both the

continuous and the discrete structure. In other cases ADMIXTURE

would converge to alternative solutions, for example using five

factors for one habitat and three for another.

PCA produced qualitatively different results, with each

individual having a non-zero loading on most factors. The second

PCA loading is straightforward to interpret, since it separates

individuals from the two habitats. However, subsequent PCA

loadings, while jointly capturing the underlying structure, are

geometrically beautiful but individually difficult to interpret

(Figure 7C).

In this case we view the results from SFA as preferable to those

from ADMIXTURE or PCA. In particular, in a real data analysis,

where the underlying structure is unknown, we think that we

would more easily deduce the underlying structure (Figure 7A)

from the results of SFA (Figure 7B) than from the results of PCA

(Figure 7C). However, we could envisage results that are still more

interpretable than those from SFA. In particular, one could

imagine developing a method (e.g., by appropriate constraints or

priors on the matrices) that mimics the results from SFAm or PCA

on the single 2-D habitat. That is, one could imagine a method

that uses three factors for each 2-D habitat: one factor to be the

mean allele frequency, and two factors to capture the geography.

Incorporating a single mean term, as do SFAm and PCA, does not

achieve this goal because a single mean term does not capture the

different mean allele frequencies of the two independent habitats.

Clustered sampling from a continuous population
Up to now we have avoided discussion of automatic selection of

an appropriate number of factors, instead relying on intuition and

heuristic arguments to guide this selection. In principle one could

attempt to formalize this process within a model-selection

framework, since SFA has an underlying probabilistic model.

However, automatic selection of an appropriate number of factors

is difficult, not least because in many practical applications there

does not exist a single ‘‘correct’’ number of factors. For example,

our 1-D simulations involved 100 discrete populations exchanging

migrants locally, so in some sense a ‘‘correct’’ number of factors is

100, but for realistic-sized data sets reliably identifying 100 factors

will not be possible, and analyzing the data with 100 factors is

unlikely to yield helpful insights. Note that interpretability of

factors does not necessarily correspond with statistical significance:

Figure 6. Results of SFA, PCA, SFAm, and ADMIXTURE applied to
simulated genotype data from a single 2-D habitat. In Panel A,
each dot represents a population colored according to location. In
Panel B, each plot is of the loadings across individuals against each
other, where the colors correspond to their locations in Panel A. The
first row shows the three SFA loadings against each other from a three
factor model. The second row shows the second two PCA loadings, the
SFAm loadings, and the mapped ADMIXTURE loadings (see text for details).
All of the methods recapitulate, to a greater or lesser extent, the
geographical structure of the habitats (up to rotation).
doi:10.1371/journal.pgen.1001117.g006

Figure 7. Results on simulated genotype data from a two
independent 2-D habitats. In Panel A, each dot represents a
population colored according to habitat and location. Colors in Panels B
and C indicate locations in Panel A. Panel B shows how SFA captures
the structure with a six factor model. Loadings on the first three factors
(first row of Panel B) correspond to location in the first habitat;
individuals in the second habitat have essentially zero loading on these
factors. Similarly, loadings on the other three factors (second row of
Panel B) correspond to location in the second habitat. Panel C shows
estimated loadings from PCA for the same data. Each plot shows one
loading plotted against another. Although the PCA results clearly reflect
the underlying structure one might struggle to infer the structure from
visual inspection of these plots if the colors were unknown.
doi:10.1371/journal.pgen.1001117.g007
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in isolation by distance scenarios many PCA factors may be

statistically significant [13], but usually only the first few are easily

interpretable, with additional factors representing mathematical

artifacts [30]. For these reasons, in practice it can be helpful to run

methods such as ADMIXTURE and SFA multiple times, with different

numbers of factors, to see what different insights may emerge.

(PCA need only be run once, because adding additional factors

does not change existing factors.)

To illustrate these issues we applied the methods to a situation

that mimics clustered sampling from a continuous habitat;

specifically we used samples of twenty individuals from each of

five evenly-spaced demes from the 1-D simulation above. These

samples can be represented in either a low-dimensional way, as

five clusters along a continuum, or a higher-dimensional way, as

five distinct populations.

Applying SFA to these data (Figure 8A), we obtain qualitatively

different results depending on the number of factors used: with two

factors the SFA loadings represent the five demes as five points

along a line (so each factor corresponds, roughly, to the allele

frequencies near each end of the line), whereas, with five factors,

the SFA loadings separate the five demes into discrete groups (so

each factor corresponds to the allele frequencies within a single

deme).

Applying ADMIXTURE to these data (Figure 8B), we obtain similar

results as for SFA, except that in the two factor case the five groups

are compressed into three groups. Thus, as with the 1-D isolation-

by-distance simulations, ADMIXTURE tends to over-discretize

continuous variation.

Applying PCA to these data (Figure 8C), the first two factors

capture the continuous variation along the line, as in the 1-D

simulations. Subsequent factors each distinguish finer-scale

structure among the five demes, and the first five PCA factors,

jointly, fully capture the structure. However, each factor is

individually difficult to interpret. In particular, because computing

additional PCA factors does not affect earlier factors, PCA never

reaches a representation in which five factors each represent the

allele frequencies of a single deme.

Applying SFAm to these data, with one factor plus the mean

term, produces results almost identical to the first two factors of

PCA (results not shown).

In summary, this simulation illustrates two important points.

First, there is not necessarily a single ‘‘correct’’ number of factors:

by applying methods such as SFA and ADMIXTURE with different

numbers of factors, we may obtain qualitatively different results

that provide complimentary insights into the underlying structure.

Second, SFA seems to be more flexible than either PCA or

ADMIXTURE in its ability to represent both discrete and continuous

structure.

European genotype data
We now compare the three methods on a set of European

individuals, consisting of genotype data on 1387 individuals at

*200,000 SNPs (after thinning to remove correlated SNPs). The

collections and methods for the Population Reference Sample

(POPRES) are described by [32]. Previous analyses of these and

similar data using PCA have found that the first two PCA factors

recapitulate the geography of Europe (e.g., [14,15]).

Based on the results from the 2-D simulations, we chose to apply

SFAm (with two factors plus a mean) here, rather than SFA. The

results from SFAm are strikingly similar to those from PCA

(Figure 9). In a few cases the sparsity-inducing prior we used in

SFAm is evident, in that there is a slight tendency for factor

loadings near zero to be shrunk closer to zero (appearing as faint

diagonal lines of individuals in the rotated SFAm plot). However

in general the effect of the sparsity-inducing prior is minimal in

these kinds of situations, where the data do not actually exhibit

sparsity. Different runs of SFAm produce alternative rotations of

this same basic image.

As in the 2-D simulations, ADMIXTURE with four factors is able to

capture the geography, but only after these four factors have been

mapped to a two-dimensional space (see Methods). As in the 1-D

and 2-D simulations, ADMIXTURE tends to push the data towards

the extremes relative to PCA or SFAm, although this effect is

substantially less prominent than in the simulations (perhaps due,

in part, to the larger number of SNPs). The ability of admixture-

based models to capture geography has been noted before [33].

All three methods are computationally tractable for data sets of

this size. Of the three methods, PCA was fastest and ADMIXTURE

was slowest, but all three methods took less than a few hours on a

modern desktop.

Admixture and Indian genotype data
Recall that, in settings with discrete structure, the SFA factors,

like the ADMIXTURE factors, correspond to the allele frequencies of

each discrete populations. One consequence of this is that in

settings involving admixed groups, the SFA loadings are highly

Figure 8. Results from SFA, ADMIXTURE, and PCA for the clustered
1-D simulation. All plots show the individuals on the x-axis (colored
and ordered by location with respect to the 1-D clustered isolation-by-
distance model) plotted against the estimated loadings.
doi:10.1371/journal.pgen.1001117.g008

Figure 9. Results from PCA, SFAm, and ADMIXTURE for the
POPRES European data. These results were rotated (but not
rescaled) to make the correspondence to the map of Europe more
immediately obvious. The results from SFAm are very similar to the
results from PCA for these data, effectively recapitulating the
geography of Europe.
doi:10.1371/journal.pgen.1001117.g009
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correlated with the admixture proportions of each individual.

Indeed, in some settings it is possible to translate the SFA loadings

into estimates of admixture proportions. Specifically, if an

individual i has all positive loadings, and the loading on factor k

is li,k, then li,k=
PK

j~1 li,j is a natural estimate of that individual’s

admixture proportion from the population represented by factor k.

However, this estimate assumes implicitly that factors have all

been scaled appropriately, which will only be true if the variance of

the allele frequencies in the ancestral populations is similar

(something that may well hold in many contexts, but would be

difficult to check).

To compare all three methods on real data that appear to

involve admixture, we consider the data from a recent study on

individuals from India [2]. These data were sampled from 25
‘‘groups’’ geographically distributed across India; [2] hypothesized

the different groups to be admixed between two ancestral

population: ancestral north Indians (ANI) and ancestral south

Indians (ASI). This is a challenging data set for admixture analysis

because the sample contains no individuals representative of either

of the two ancestral populations. For this reason, [2] uses a novel

tree-based method (f3 ancestry estimation, described in their

supplemental information) to estimate the ancestry proportions of

each group.

We applied PCA, SFA with two factors, and ADMIXTURE with

two factors to the genotype data from this study, after imputing the

missing genotypes, removing some of the outlier populations as

defined in the original study, and removing SNPs with a minor

allele frequency less than 0:025 (see Methods). We encountered

problems applying SFA to these data with the low frequency SNPs

included; specifically, SFA often converged to a solution where one

individual had a very small residual variance term. All three

methods produce very similar loadings (Figure S2) that correlate

well with the ancestry proportions estimated in [2] (Pearson

correlations of 0:89 for PCA, 0:89 for SFA, and 0:86 for

ADMIXTURE) (Figure 10).

In one sense, the factor loadings provide more detailed ancestry

information than the f3 method, because the loadings are

individual-specific rather than group-level. However, in this

setting, the loadings provide measures of individual-specific

ancestry that are reliable only in a relative sense. That is, they

may correctly order the individuals in terms of their degree of

ancestry in each ancestral population, but do not necessarily

provide accurate ancestry proportions for each individual. For

example, the estimated ancestry proportions from ADMIXTURE

range from 0% to 100%, whereas the group-level estimates from

the f3 method range from 39% to 77%. This reflects the difficulty

of reliably estimating the ancestral population allele frequencies in

the absence of any reference individuals from the ancestral

populations.

Discussion

In this paper we have presented a unified view of the two most

common methods to analyzing population structure – admixture-

based models and PCA – by interpreting both as matrix

factorization methods with different constraints on the matrices.

This unification provides insights into the different behavior of

these methods under various scenarios. For example, viewing

admixture-based models as imposing a convexity constraint

explains why these models would be expected to need four factors

to capture the structure across a square habitat, whereas PCA

requires only two factors plus a mean.

Viewing these methods as special cases of a much larger class of

matrix factorization methods also immediately suggests many

possible novel approaches to the analysis of population structure.

Here we consider one such method, sparse factor analysis (SFA).

We illustrate that SFA bridges the gap between PCA and

admixture-based models by effectively recapitulating the results

from admixture-based models in discrete population settings, and

recapitulating the results from PCA in continuous settings. We also

illustrate a scenario involving a mixture of discrete and continuous

structure where SFA produces more interpretable results than

either admixture-based models or PCA.

We have also experimented with two other matrix factorization

approaches in the analysis of population structure: sparse

principal components (SPC) [24] and non-negative matrix

factorization [23]. SPC, implemented in the R function SPC in

the R package PMA, computes sparse PCs by solving a penalized

matrix factorization problem with an L1 penalty (a penalty on the

sum of the absolute values of the factor loadings) to encourage

sparsity. The algorithm is greedy in that it computes the factors

one at a time, each time removing the effect of the previous

factors from the original matrix. The user can choose whether to

require the factors to be orthogonal; in our experiments we did

not require orthogonality. SPC has a user-defined tuning

parameter that controls the level of sparsity. We found that,

with careful choice of this parameter, we were able to get SPC to

produce results similar to PCA when the data are continuous, and

closer to an admixture-based model when the data are from

discrete groups. In particular, the main difference from SFA was

on the data from two independent 2-D habitats. where SPC did

not model the two habitats in separate factors. (We were unable

to apply SPC to the larger European and Indian data sets, due to

limitations of R.)

As its name suggests, non-negative matrix factorization (NMF)

[23,34] constrains the factors and loadings to have non-negative

values. For data sets considered here, we found that NMF typically

produced results similar to SFA. However, NMF is less flexible

than SFA in that it effectively requires the input matrix to be non-

negative. In the genetic context this is not a big limitation as

genotype data are most often encoded as non-negative integers (0,

1, 2), but even here it makes NMF slightly less flexible. For

example, this means that NMF cannot be applied to genotype data

that have been mean-centered, and there is no sensible way to

include a mean term as in SFAm. As we have seen, in some

settings incorporating a mean improves the interpretability of the

results.

Figure 10. Plot of estimated admixture proportions of each
Indian group versus the relative admixture proportions from
SFA on the Indian data set. This plot shows good correlation
between the relative admixture proportions from SFA and the
estimated admixture proportions from previous work. The colors
coding the groups are described in the India map.
doi:10.1371/journal.pgen.1001117.g010
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The computational methods used to perform the matrix

factorization for PCA, SFA, and ADMIXTURE (and also structure)

are practically quite different. In particular, the PCA factorization

has a single global optimum that can be obtained analytically, and

so multiple runs of PCA produce the same results. In contrast both

admixture-based models and the SFA factorizations can have

multiple local optima, and the computational algorithms used can

produce different results depending on their starting point. In

practice, in simple cases (e.g., involving a moderate number of

discrete populations), both algorithms appear to produce consis-

tent results across runs. In more complex situations we have found

more variability in the results, particularly when the number of

factors is large. In some cases there appear to be identifiability

issues: for example, in the European data, multiple runs of SFAm

produce loadings that are rotations of one another.

Another qualitative difference between the three methods is that

PCA produces consistent results as more factors are added,

whereas admixture-based methods and SFA may produce

qualitatively different results with different numbers of factors.

Although consistency may seem a desirable property, there can be

benefits to the different perspectives obtained by using different

numbers of factors, as we illustrated in the results. To further

contrast these two behaviors, consider the application of these

methods to data from a continuous 1-D habitat. As noted

previously [30], the first PCA loading (after removing the mean)

roughly captures position within the habitat, whereas subsequent

loadings are sinusoidal functions of increasing frequency. In

contrast, when SFA or ADMIXTURE are run with an increasing

number of factors, they redistribute their factors along the line so

that each factor represents the average allele frequencies of an

increasingly local region. (If too many factors are used, there is not

enough signal in the data to differentiate populations on small

neighboring segments, and the results become unreliable.)

Although the additional factors in each case are qualitatively very

different, they simply reflect different ways to capture finer-scale

structure in the data. Which of these behaviors is preferable may

be context-dependent, but understanding these differences is

certainly helpful in interpreting the results of a data analysis.

Although we have focused on the different constraints

imposed by different matrix factorization methods, they also

differ in another way: their assumed error distribution. In

particular, admixture-based models assume a binomial error,

whereas PCA is based on a least-squares criterion, which can be

interpreted as a Gaussian error, and our SFA explicitly assumes

Gaussian error. The binomial error may be more appropriate

for data from an admixed population, but in general it is less

flexible than the Gaussian model because the binomial variance

is determined by the mean, rather than being a free parameter.

It seems possible that this partly explains the convergence

problems we observed in ADMIXTURE for the 2-D habitat, in

which case it may be worth adapting the ADMIXTURE model to

assume a Gaussian error.

We note that there are several existing approaches to sparse

factor analysis besides the novel approach that we introduce here

[19–21,35]. Although these methods have similar motivations,

they differ in several respects, and we have found that these

differences can substantially impact results (not shown). One

advantage of our approach is its computational speed. Another

feature of our approach is its lack of manually-tunable parameters

(other than the number of factors). This, of course, is a double-

edged sword, since on the one hand, it makes the method easy to

apply, but on the other hand, reduces flexibility. In practice, as our

results show, our approach is sufficiently flexible to deal with a

range of contexts involving different levels of sparsity.

Our approach to SFA may also be useful in other contexts (e.g.,

gene expression data [22,35] or collaborative filtering [36]). In

some cases, particularly when the data do not exhibit much

sparsity, it may be desirable to extend our method in various ways.

For example, as we have implemented it here, SFA encourages

sparsity only on the loadings, and in some contexts it may be

desirable to encourage sparsity on both the factors and the

loadings (as in the general penalized matrix decomposition method

[24]). This could be achieved by putting an ARD prior on the

elements of F , and applying an analog of our ECME algorithm. It

may also be fruitful to consider ways to increase the sparsity in the

loadings, since in some other contexts we have found that the

ARD prior we use can be generous in its use of non-zero loadings.

Finally, although we have argued that in the context of population

structure that applying methods with different numbers of factors

may yield more insight than selecting a single ‘‘correct’’ number of

factors, this may not be equally true in all contexts. In particular,

the population structure case is complicated by the fact that the

factors are often highly correlated with one another (e.g., because

they often represent allele frequencies in closely-related popula-

tions); in settings where factors are less correlated it may be more

helpful to consider methods for automatically selecting the number

factors (e.g., [37]).

Methods

Genotype simulations
We simulated genotypes from 1-D and 2-D habitats using the

program ms [38], using stepping-stone models similar to [30]. In

the 1-D model we assumed 100 demes along a line and allowing a

high level of migration (40:0) between adjacent demes. This

migration rate produced an Fst of 0:09 between the two demes at

either end of the line, which enables the two most extreme demes

to be easily separable with 1000 SNPs. We sampled one diploid

individual (two independent haplotypes) from each deme at 1000
independent SNPs.

For the 2-D simulations, we assumed 225 demes arranged in a

15 by 15 square grid, with migration parameters 0:2 between

neighboring demes. We then sampled one diploid individual from

each deme at 1000 independent SNPs. For the two 2-D habitat

simulations, we simulated two independent sets of 225 demes and

sampled a single individual from each deme at 1000 independent

SNPs.

For both the simulated and the real genotype data, we encoded

each genotype (AA, AB, or BB) as 0, 1 or 2.

POPRES European data
We used the POPRES European data set from [32], and

processed the data as in [14]. The POPRES data set was obtained

from dbGaP at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id = phs000145.v1.p1 through dbGaP acces-

sion number phs000145.v1.p1. This data included 1,387 individ-

uals, each of whom identify all four grandparents as being from a

particular European country, genotyped at 447,245 SNPs, and

pruned down to 197,146 SNPs after removing one of any pair of

SNPs that had an r2
w0:8 [14].

Since our SFA method does not currently deal with missing

data, we imputed missing genotypes using IMPUTE2 [39]. We

imputed each chromosome by intervals of 20Mb, starting at

position 0, with a buffer of size 1Mb on either side of the interval.

We set the number of burn-in iterations to 10 and the number of

MCMC iterations to 30. We set the effective population size of the

European sample to be 11,418, and we used the combined linkage

maps from build 36, release 22 (downloaded from the IMPUTE
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website). We used these imputed genotypes as input to all three

methods to facilitate fair comparisons.

Indian data
We used the Indian genotype data from [2]. The original data

includes 132 individuals from 25 groups; we removed the groups

that appeared to be genetic outliers as described in the original

paper (Sahariya, Nysha, Aonaga, Siddi, Great Andamanese,

Hallaki, Santhal, Kharia, Onge, and Chenchu), leaving 15 groups

and 74 individuals with 587,753 genotyped SNPs. We imputed

missing genotypes using IMPUTE2 as above, but with an effective

population size of 13,000, and used these imputed genotypes as

input to all three methods. After imputation, we pruned the data

down to 196,375 SNPs by removing one of any pair of SNPs that

had an r2
w0:5, and removing SNPs that had a minor allele

frequency less than 0:025.

Sparse factor analysis
Let n be the number of individuals in a sample and p be the

number of genotypes. Represent each allele at a locus as a number

(e.g., for SNPs from a diploid organism, as in our results above,

represent AA as 0, AB as 1, and BB as 2). Our factor analysis

model with K factors can be written as:

Gi,j~mjz
XK

k~1

Li,kFk,jz i,j , ð3Þ

or, equivalently,

Gi,j*N (mjz(LF )i,j , y{1
i ) ð4Þ

where G is an n|p data matrix, m is a p-vector of column-specific

means, L is the n|K matrix of factor loadings, F is the K|p matrix

of factors, and is an n|p matrix with each element independently

distributed i,j*N (0, y{1
i ). We put a gamma prior on the inverse

residual variance that acts as a regularizer: yi*Ga(a, b), which

has mean ab and variance ab2. In practice, we set a~1 and

b~
20

p
. This model, with a mean term, is referred to as SFAm in

the main text; the SFA model is obtained by fixing the vector m at

zero. The ECME algorithm for fitting SFAm is described below;

the ECME algorithm for fitting SFA is obtained by simply setting

m~0 throughout. Note that here we have chosen to have column-

specific (i.e., SNP-specific) means and row-specific (i.e., individual-

specific) variances Y. It is possible to modify the ECME updates

below to allow for different assumptions, for example to allow row-

specific means or column-specific variances. In some contexts,

including the population structure problem considered here, it

might make sense to allow more general assumptions, such as

variance terms on both the rows and columns of the matrix;

indeed these options are implemented in the SFA software,

although not investigated here.

To induce sparsity in the factor loadings L, we use an automatic

relevance determination (ARD) prior [40]. Specifically, we assume

Li,k*N (0, s2
i,k), where the matrix S~(s2

i,k)i~1,...,n,k~1,...,K is a

parameter that we estimate, together with the other parameters,

using maximum likelihood. If the estimate of s2
i,k~0, this implies

that Li,k~0, thus inducing sparsity.

Integrating out L, the rows of G are conditionally independent

given the other parameters, with:

Gi,:*N (m, FtSiFzY{1
i ), ð5Þ

where Si~diag(s2
i,:) (a diagonal matrix with the K-vector s2

i,: on

the diagonal), and Y{1
i ~y{1

i Ip. Thus the log marginal likelihood

for the parameters m, F , S, Y is:

L(m, F , S, Y; G) :~ log p(GDm, F , S, Y) ð6Þ

~{
Xn

i~1

1

2
p log (2p)zlog DFtSiFzY{1

i Dz~GGt
i,:(F

tSiFzY{1
i ){1 ~GGi,:

h i
, ð7Þ

where ~GGi,: :~Gi,:{m.

Sparse factor analysis ECME algorithm
We fit this model using an expectation conditional maximiza-

tion either (ECME) algorithm [41] to maximize L(m, F , S, Y; G).
This algorithm is similar to an EM algorithm, but each maximiza-

tion step maximizes either the expected log likelihood, or the

marginal log likelihood, for a subset of the parameters conditional

on the others. Specifically, the updates to m, F , and Y involve

maximizing the expected log likelihood (with the expectation taken

over L), whereas the updates to S directly maximize the log

marginal likelihood.

To compute the expected log likelihood requires the first and

second moments of the factor loadings Li,:. The data Gi,: and the

loadings Li,: are jointly normal (as in, e.g., [42]):

Gi,:

Li,:

� �
Dm, F , Si, Yi*N

m

0K

� �
,

FtSiFzY{1
i F tSi

SiF Si

" # !
, ð8Þ

where 0K is a K-vector of zeros. Standard results for joint

Gaussian distributions give the conditional expectation for Li,::

Li :~E Li,:DGi,:, m, F , Si, Yi½ �~Vi
~GGi,:, ð9Þ

where Vi~SiF (FtSiFzY{1
i ){1. Similarly, the conditional

second moment is given by:

L2
i :~E½Li,:L

t
i,:DGi,:, m, F ,Si, Yi�~Si{ViF

tSizVi
~GGi,:

~GGt
i,:V

t
i : ð10Þ

The updates for m, F , and Y involve maximizing the expect-

ed complete data log likelihood, Q(m, F , S, Y; G) :~
E½log (p(GDL, m, F , Y))DS�, which from Equation 4, and including

the prior distribution on y{1
i , is given by:

Q(m, F , S, Y; G)~constz
Xn

i~1

Qi(m, F , Si, Yi; Gi,:) ð11Þ

where

Qi(m, F , Si, Yi; Gi,:)~
p

2
zp(a{1)

� �
log (yi)

{yi

1

2

Xp

j~1

~GG2
i,j{2~GGi,jF

t
:,jLizFt

:,jL
2
i F:,j

� �
{

yi

b

� �
:
ð12Þ

Taking the derivative of Q(m,F ,S,Y; G) with respect to m and

setting to 0, we get the update for m:

(7)
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LQ(F , S, Y, m; G)

Lm
~
Xn

i~1

yi

2
{2(Gi,:{m)z2FtLi

� 	
~0 ð13Þ

m̂m~

Pn
i~1 yi(Gi,:{FtLi)Pn

i~1 yi

: ð14Þ

In these expressions, and in what follows, we are assuming

element-wise multiplication when a scalar multiplies a vector or a

matrix.
Taking the derivative of Q(m, F , S, Y; G) with respect to F:,j

and setting to zero, we get the update for F:,j :

LQ(F , S, Y, m; G)

LF:,j
~
Xn

i~1

yi(Li
~GGi,j{L2

i F:,j)~0

F̂F:,j~
Xn

i~1

yiL
2
i

 !{1Xn

i~1

yiLi
~GGi,j : ð15Þ

Taking the derivative of Q(F , Si, Yi, m; Gi,:) with respect to yi

and setting to zero, we get the update for yi:

ŷyi~
1

pz2p(a{1)

Xp

j~1

~GG2
i,j{2~GGi,jF

t
:,jLizFt

:,jL
2
i F:,j

� �
z

2

b

 !" #{1

: ð16Þ

To update s2
i,k we can use the result from [40] to obtain the

values of S that maximize the log marginal likelihood

L(m,F ,S,Y; G) with fixed values of m, F , and Y:

ŝs2
i,k~½(q2

i,k{si,k)=s2
i,k�z ð17Þ

where qi,k~Ft
kb{1
:k,i

~GGi,: and si,k~Ft
kb{1
:k,iFk, where b:k,i~

(FtSi,:kF )zY{1
i and Si,:k~diag(s2

i,1, :::, s2
i,k{1, 0, s2

i,kz1, :::,

s2
i,K ). Note that ½a�z~a when aw0 and ~0 otherwise. This works

because, given F , the SFA model (Equation 3) is essentially the sparse

regression model considered in [40] with F playing the role of the

covariates.

Note that F and S are non-identifiable in that multiplying the

kth row of F by a constant c and dividing the kth column of S by

c2 will not change the likelihood (Equation 6). To deal with this we

impose an identifiability constraint,
1

p

Xp

j~1
(Fk,j{�FFk,:)

2~1 for

k~1,:::,K , where �FFk,:~
1

p

Xp

j~1
Fk,j . Specifically, after each

iteration we divide every element of Fk,: by its standard deviation

ck, and multiply the kth column of S by c2
k.

Because we choose not to update the expected values of the

loading matrix L between the CM steps, monotone convergence

of the log marginal likelihood is not guaranteed, although in

practice it appears to converge well. We find that convergence is

reached for the applications described here after fewer than 200
iterations. For each genotype data set, we run SFA multiple times

with random seeds, setting the number of factors as described in

the text; results presented in figures are a representative example.

A C++ package containing the SFA and SFAm code is available

for download at http://stephenslab.uchicago.edu/software.html.

Principal components analysis
For smaller data sets (all but the European and Indian data), we

computed principal components by first standardizing the columns

of the matrix G (subtracting their mean and dividing by their

standard deviation) and then finding the eigenvectors of the n|n
covariance matrix of the individuals in R [43] using the function

eigen. In our terminology, these eigenvectors, or principal

components (PCs), are the loadings, i.e., the columns of L. For

larger data sets, we identify the PCs using the SmartPCA software

from the EigenSoft v3:0 package [7,13]. For both the European

genotype data and the Indian genotype data, we set the number of

output vectors to 20, we use the default normalization style, we do

not identify outliers, we have no missing data, and we remove all

X chromosome data.

Admixture
We ran ADMIXTURE v1:02 [11] with multiple random starting

points using the -s option.

We mapped the four-dimensional admixture proportions into

two-dimensions for visualization as follows: the four-dimensional

vector (q1, q2, q3, q4) maps to the two-dimensional vector

q1(1, 0)zq2(0, 1)zq3({1, 0)zq4(0, {1).

Supporting Information

Figure S1 Results of applying SFA, PCA, and ADMIXTURE to the

HapMap genotype data after removing half of the Africans. Each

plot in the first three columns shows the loadings estimated from

the modified data set across individuals. Each plot in the second

three columns shows the estimated factors for the original data set

against the estimated factors for the modified data set. The first

row is SFA, the second row is PCA, and the third row is

ADMIXTURE. European individuals are denoted with blue ‘x’s,

African individuals are denoted with red triangles, and Asian

individuals are denoted with green ‘+’s. A dashed horizontal line is

at zero on the y-axis. Note how the correlation of the two

unaffected populations for SFA and ADMIXTURE is much higher

than for any of the factors in PCA.

Found at: doi:10.1371/journal.pgen.1001117.s001 (5.76 MB TIF)

Figure S2 Results from PCA, SFA, and ADMIXTURE for the

Indian data. Only one estimated loading from SFA and ADMIX-

TURE are shown because the second set of loadings are perfectly

negatively correlated to the first. The results from SFA are almost

identical to those from PCA for these data. The individuals are

colored as in the map from Figure 10 in the main text according to

their population group.

Found at: doi:10.1371/journal.pgen.1001117.s002 (2.06 MB TIF)

Text S1 Supplemental information. In particular, this informa-

tion addresses the mathematical consequences of standardizing the

genotype matrix before applying a matrix factorization method.

Found at: doi:10.1371/journal.pgen.1001117.s003 (0.04 MB PDF)

Acknowledgments

The authors gratefully acknowledge the help of John Novembre for

providing ms scripts for the habitat simulations, information about the

preprocessing of the GSK European data set, and thoughtful discussions

and Bryan Howie for providing a pre-release version of impute2.

Author Contributions

Conceived and designed the experiments: BEE MS. Performed the

experiments: BEE. Analyzed the data: BEE MS. Wrote the paper: BEE

MS.

(16)

Population Structure Analysis: A Unified Framework

PLoS Genetics | www.plosgenetics.org 11 September 2010 | Volume 6 | Issue 9 | e1001117



References

1. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, et al. (2002)

Genetic Structure of Human Populations. Science 298: 2381–2385.
2. Reich D, Thangaraj K, Patterson N, Price AL, Singh L (2009) Reconstructing

Indian population history. Nature 461: 489–494.
3. Wasser SK, Mailand C, Booth R, Mutayoba B, Kisamo E, et al. (2007) Using

DNA to track the origin of the largest ivory seizure since the 1989 trade ban.
Proceedings of the National Academy of Sciences 104: 4228–4233.

4. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, et al. (2004) Genetic

Structure of the Purebred Domestic Dog. Science 304: 1160–1164.
5. Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect

population stratification in association studies. American Journal of Human
Genetics 65: 220–228.

6. Pritchard J (2001) Case-Control Studies of Association in Structured or Admixed

Populations. Theoretical Population Biology 60: 227–237.
7. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)

Principal components analysis corrects for stratification in genome-wide
association studies. Nature Genetics 38: 904–909.

8. Falush D, Stephens M, Pritchard JK (2003) Inference of Population Structure

Using Multilocus Genotype Data: Linked Loci and Correlated Allele
Frequencies. Genetics 164: 1567–1587.

9. Tang H, Peng J, Wang P, Risch NJ (2005) Estimation of individual admixture:
Analytical and study design considerations. Genetic Epidemiology 28: 289–301.

10. Tang H, Coram M, Wang P, Zhu X, Risch N (2006) Reconstructing genetic
ancestry blocks in admixed individuals. American Journal of Human Genetics

79: 1–12.

11. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of
ancestry in unrelated individuals. Genome Research 19: 1655–1664.

12. Zhu X, Zhang S, Zhao H, Cooper RS (2002) Association mapping, using a
mixture model for complex traits. Genetic Epidemiology 23: 181–196.

13. Patterson N, Price AL, Reich D (2006) Population Structure and Eigenanalysis.

PLoS Genetics 2: e190. doi:10.1371/journal.pgen.0020190.
14. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, et al. (2008) Genes

mirror geography within Europe. Nature 456: 98–101.
15. Lao O, Lu TT, Nothnagel M, Junge O, Freitag-Wolf S, et al. (2008) Correlation

between Genetic and Geographic Structure in Europe. Current Biology 18:
1241–1248.

16. Buntine W (2002) Variational extensions to EM and multinomial PCA. In:

Proceedings of the European Conference on Machine Learning.
17. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure

using multilocus genotype data. Genetics 155: 945–959.
18. Eckart C, Young G (1936) The approximation of one matrix by another of lower

rank. Psychometrika 1: 211–218.

19. Lucas J, Carvalho C, Wang Q, Bild A, Nevins J, et al. (2006) Sparse Statistical
Modelling in Gene Expression Genomics 155–176, Cambridge University Press.

20. Fokoue E (2004) Stochastic determination of the intrinsic structure in Bayesian
factor analysis. Tech. rep., Statistical and Applied Mathematical Sciences

Institute (SAMSI).
21. Carvalho C, Chang J, Lucas J, Nevins JR, Wang Q, et al. (2008) High-

Dimensional Sparse Factor Modelling: Applications in Gene Expression

Genomics. Journal of the American Statistical Association 103: 1438–1456.
22. Pournara I, Wernisch L (2007) Factor analysis for gene regulatory networks and

transcription factor activity profiles. BMC Bioinformatics 8.

23. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix

factorization. Nature 401: 788–791.

24. Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition,

with applications to sparse principal components and canonical correlation

analysis. Biostatistics 10: 515–534.

25. Mackay DJC (1992) Bayesian methods for adaptive models. Ph.D. thesis,

California Institute of Technology, Pasadena, CA.

26. Neal RM (1996) Bayesian Learning for Neural Networks. Lecture Notes in

Statistics No. 118, Springer-Verlag.

27. Tipping ME (2000) The relevance vector machine. In: Proceedings of the Neural

Information Processing Systems 12.

28. Lawrence N (2005) Probabilistic non-linear principal component analysis with

Gaussian process latent variable models. Journal of Machine Learning Research
6: 1783–1816.

29. Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, et al. (2006) A worldwide
survey of haplotype variation and linkage disequilibrium in the human genome.

Nature Genetics 38: 1251–1260.

30. Novembre J, Stephens M (2008) Interpreting principal component analyses of

spatial population genetic variation. Nature Genetics 40: 646–649.

31. McVean G (2009) A Genealogical Interpretation of Principal Components

Analysis. PLoS Genetics 5: e1000686. doi:10.1371/journal.pgen.1000686.

32. Nelson MR, Bryc K, King KS, Indap A, Boyko AR, et al. (2008) The Population

Reference Sample, POPRES: A Resource for Population, Disease, and

Pharmacological Genetics Research. American Journal of Human Genetics
83: 347–358.
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